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Abstract 

 

Evaluating the Redundancy of Steel Bridges: Effect of a Bridge Haunch 

on the Strength and Behavior of Shear Studs under Tensile Loading 

 

 

James Patrick Sutton, M.S.E. 

The University of Texas at Austin, 2007 

 

Supervisor:  Karl H. Frank 

 

AASHTO defines a fracture critical member (FCM) as a component in tension 

whose failure is expected to result in the collapse of the bridge.  Bridges with FCMs must 

be inspected more frequently for this reason, which can lead to greater cost during the life 

of the bridge and a general reluctance to design new bridges with FCMs.  However, 

evidence has shown that certain bridges with FCMs have redundant load paths and can 

withstand a fracture to an FCM.   

There are many twin steel box girder bridges across the state of Texas, all of 

which are considered to be fracture critical because it is assumed that a fracture in one 

girder will initiate a total bridge collapse.  In order to prevent collapse after the fracture 

of one box girder, the load that had been resisted by that girder must be transferred to the 

intact girder.  The fractured girder will deflect so that the shear studs are loaded in 

tension and the deck slab is bending in double curvature.  The shear studs and deck slab 

must both have the capacity to transfer the force over to the other girder. 
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The governing failure mode for the studs loaded in tension is a concrete breakout 

failure.  This is a brittle failure in which the studs pull out with a large prism of concrete.  

When making these calculations, it was discovered that the bridge haunch may greatly 

reduce the concrete breakout strength of a single row of studs because it creates an edge 

effect.  In order to determine the exact effect that the bridge haunch has on the tensile 

capacity of the shear studs, a series of laboratory tests were performed on bridge deck 

sections with and without a haunch.  

The results of the laboratory tests showed that the bridge haunch greatly reduces 

the capacity of a row of studs grouped transversely across the top flange.  More 

importantly the specimens with a haunch exhibited no ductility at failure, which may 

prevent redistribution of load during a fracture event.  The specimens without a haunch 

did not suffer a reduction in strength when multiple studs were grouped across the flange 

width because there was no edge effect.  In addition these specimens exhibited some 

ductility at failure because the studs extended into the bottom reinforcement mat, which 

forced the reinforcement bars to intersect the breakout failure plane. 

The haunch is a necessary part of bridge construction, and despite the negative 

effects it has on the tensile behavior of the studs, it cannot be eliminated.  With this in 

mind a series of techniques to improve the tensile behavior of the studs are 

recommended.  These techniques include using haunch reinforcement bars, spacing studs 

longitudinally rather than grouping the studs transversely across the flange width, using 

longer studs, and developing a reduced diameter shear stud that will make yielding of the 

studs the governing failure mode.  Yielding of the studs is the ideal failure mode because 

it would allow for the most redistribution of load during a fracture event.        
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CHAPTER 1 

Introduction and Background 

1.1 FRACTURE CRITICAL BRIDGES 

In 1967 the Silver Bridge in Point Pleasant, West Virginia collapsed due to the 

brittle fracture of a non-redundant eyebar chain that supported the main span (Figure 1.1).  

This collapse initiated a series of changes in the design, material specifications, and 

inspection of steel bridges.  In 1978 special provisions were developed for bridges with 

fracture critical members (FCM) (Connor, Dexter, and Mahmoud, 2005).  An FCM is 

defined by the American Association of State Highway Transportation Officials 

(AASHTO) as a “component in tension whose failure is expected to result in the collapse 

of the bridge or the inability of the bridge to perform its function” (AASHTO, 2004).        

 

Figure 1.1: Collapse of Silver Bridge (Connor, Dexter, and Mahmoud, 2005) 
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Fracture critical bridges (FCB), or bridges with an FCM, are required to be 

inspected more frequently than a bridge that is considered non-fracture critical.  The cost 

of inspection during the life of an FCB can typically be two to five times greater than a 

bridge without FCMs (Connor, Dexter, and Mahmoud, 2005).  The increased cost 

associated with FCBs has led to fewer new FCBs being designed even in situations when 

an FCB may be a more effective solution.   

There has been evidence that certain FCB types have redundant load paths and 

can withstand a fracture to an FCM.  AASHTO classifies all two girder steel bridges as 

fracture critical, but experience has shown that two girder bridges do not collapse due to a 

fracture in one girder and can even continue to remain in service (Daniels, Kim, and 

Wilson, 1989).  For example, in 1977 a two girder bridge at Neville Island in Pittsburgh, 

Pennsylvania suffered a full-depth crack in one girder and continued to carry traffic until 

a boat captain passing underneath the bridge spotted the crack (Figure 1.2).            

 

Figure 1.2: Full-depth fracture of the I-79 two girder bridge at Neville Island in 
Pittsburgh, PA (Connor, Dexter, and Mahmoud, 2005) 
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Current bridge specifications assume that two girder bridges are fracture critical 

because they assume that the structural components of a bridge behave independently, 

but in reality these components interact with each other to form one structural system 

(Ghosn and Moses, 1998).  In the case of two girder bridges, other components such as 

the deck slab can provide a redundant load path and prevent collapse when one girder 

experiences a fracture (Connor, Dexter, and Mahmoud, 2005).       

1.2 FSEL FRACTURE CRITICAL BRIDGE TEST 

The opportunity to perform a full-scale fracture test arose when the Texas 

Department of Transportation (TxDOT) was removing a 120-ft simple span twin steel 

trapezoidal box girder bridge segment along Interstate Highway 10 in Houston.  There 

are many twin steel box girder bridges in the state of Texas, all of which are considered 

to be FCBs.  The inspection of box girder bridges is particularly difficult and expensive 

because it requires the inspector to be inside of the box girder.  The goal of this fracture 

test was to learn about the load transfer that takes place during a fracture event and to use 

that information to help calibrate an analytical model that can predict the behavior of twin 

girder FCBs in a fracture event. 

Initially the bridge was to be tested in place, but, due to safety concerns, the 

bridge girders were removed and transported to the Phil M. Ferguson Structural 

Engineering Laboratory (FSEL) at the University of Texas at Austin. Once the girders 

arrived at FSEL, a contractor was hired to reconstruct the bridge deck and traffic rails.  A 

cross-section of the FSEL test bridge, including the T501 rails, is shown in Figure 1.3.   
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Figure 1.3: Cross-section of FSEL test bridge 

After the bridge had been reconstructed in accordance with TxDOT standard 

practices, a fracture test was performed on the bridge.  During the test, the bridge was 

loaded with the equivalent of a 76-kip truck.  The fracture was simulated by cutting the 

bottom flange of the exterior girder at the mid-span location.  A linear-shaped charge was 

used to cut the flange to simulate the dynamic fracture of the flange.  The charge cut 

completely through the tension flange of the girder, but the fracture did not propagate up 

the girder webs.  The bridge behaved extremely well during the test, and the fractured 

girder deflected only an additional 1/4 in. after the fracture of the flange.         

Unfortunately, there was not much evidence of load transfer to the other girder 

because the load carried by the fractured flange was simply resisted by the webs in the 

area of the fracture.  A future test is planned to propagate the existing crack up the webs 

in order to determine how the load is transferred from the fractured girder to the non-

fractured girder and to determine if the bridge can withstand a full depth fracture without 

collapse.           
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1.3 ANALYSIS OF BRIDGE COMPONENTS 

1.3.1 Introduction 

Currently, the best way to model system behavior is through the use of detailed 

analytical models such as finite element programs.  While these models may produce the 

most accurate results, they also require a substantial amount of work and time to be 

developed and to be run.  It would be beneficial for designers or bridge owners to have a 

simple set of analytical procedures that can be checked before developing a complex 

finite element model.  If these simple analyses show that a bridge might have adequate 

redundancy, a more detailed analysis can then be developed to confirm that the system 

can withstand a fracture to an FCM.  However, if the simple analyses show that the 

bridge cannot withstand a fracture to an FCM, then the time and money that would have 

been spent on a more detailed model can be saved.         

A set of simple calculations was developed to predict the behavior of the FSEL 

test bridge during the fracture test.  These analyses focused on the individual components 

of the bridge that would be required to provide an alternate load path after the fracture of 

one girder – namely the shear studs, deck slab, and remaining girder.  In each case 

specific assumptions were made in order to simplify the analysis.  Therefore, these 

analyses do not capture the exact behavior of the system during a fracture event. Rather, 

they are meant to be used as an initial check prior to making the decision to develop a 

detailed finite element model.                

1.3.2 Load Path 

After a fracture occurs in the tension flange of one of the girders and propagates 

up the webs, it is assumed that the girder will no longer be able to resist load.  The 

fracture at mid-span can be compared to placing a hinge in the girder.  A simply 
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supported beam cannot carry load by flexure with a hinge at the mid-span; therefore, in 

order to prevent a total bridge collapse, the load that had been resisted by the fractured 

girder must be transferred to the other girder.  The fractured girder will drop down and 

deflect as shown in Figure 1.4.  When this happens, the shear studs will be loaded in 

tension and must be able to transfer the load into the deck slab.  The deck slab must have 

enough capacity to transfer the load over to the other girder.  Finally, the other girder 

must have enough moment capacity to support the entire weight of the bridge and any 

live load on the bridge at the time of fracture.            

Fracture  

Figure 1.4: Assumed deflected shape at point of girder fracture 

For these calculations it was assumed that the required load the studs and slab 

needed to redistribute was equal to half of the total weight on the bridge.  This includes 

the weight of the fractured girder, half of the slab, one railing, and half of the simulated 

truck load.  This load was multiplied by a factor of two to account for the dynamic effect.  

It is important to note that the dynamic amplification factor of 2.0 is an upper bound and 

is expected to be lower for the actual response.  For the FSEL test bridge, half the weight 

of the bridge plus half the weight of a 76-kip truck was calculated to be about 277 kips, 

or 554 kips after doubling the load for the dynamic effect.  Strength reduction factors (φ) 
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were not applied to any of these calculations.  Refer to Appendix A for the calculation 

details.  The concepts used to make these calculations are presented here.      

1.3.3 Analysis of Shear Studs 

The first components of the bridge system that must be able to transfer the load 

from the fractured girder to the intact girder are the shear studs that connect the girder to 

the deck slab.  In order to simplify the calculations, it was assumed that the studs would 

be under tension only.  The equations from Appendix D of the ACI 318 Building Code 

were used to calculate the tensile capacity of a single row of studs.  After the capacity of 

a single row of three studs was calculated, the number of rows needed to resist the 554-

kip force was determined.  This calculation assumes that the studs can perform in a 

ductile manner and redistribute the force along the length of the girder.      

The calculation of the tensile capacity of anchors in concrete, the predicted tensile 

capacity of a row of shear studs on the FSEL test bridge, and the percentage of the span 

length required to distribute the 554-kip force are discussed in detail in Chapter 2.        

1.3.4 Analysis of Deck Slab 

Assuming that the shear studs are able to transfer load into the deck slab, the deck 

slab must then be able to transfer the load across to the other box girder.  In this analysis 

two criteria were checked for the deck slab.  The first was the flexural capacity of the 

slab, and the second was the shear capacity of the slab.  In each case the capacity of a 1-ft 

wide section of the deck slab was calculated.  Then the percentage of the total span length 

needed to distribute the required force during a fracture event was determined.  Refer to 

Appendix A for all calculations associated with the deck slab capacity and distribution of 

the 554-kip force.     
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To calculate the bending capacity of the deck slab, it was assumed that the slab 

would be in double curvature after the fracture and that the bending moment diagram at 

the ultimate state would be as shown in Figure 1.5.  The positive and negative moment 

capacities were calculated assuming that the ultimate concrete compressive strain was 

equal to 0.003 in./in. and that the concrete stress distribution could be estimated as a 

rectangular stress block with magnitude equal to 0.85fc’ (ACI 318-05).  The concrete 

compressive strength (fc’) was assumed to be 4,000 psi.  This value is the required 

minimum strength of TxDOT Class “S” concrete, which was used in the deck slab of the 

FSEL test bridge.          
Mn+

Mn-

s

 

Figure 1.5: Bending moment in deck slab at ultimate state 

The positive moment capacity and the negative moment capacity were calculated 

to be 20.5 kip-ft and 16.6 kip-ft, respectively, for a 1-ft wide section of the deck.  After 

calculating the ultimate positive and negative moment capacity of the deck slab, the shear 

across the slab can be determined from the following equation: 

s
MM

V nn
−+ +

=          Equation 1.1 

where:   V = shear in slab at ultimate moment state (kip) 
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Mn
+ = nominal positive moment capacity (kip-ft) 

  Mn
- = nominal negative moment capacity (kip-ft)  

  s = spacing between top flanges (= 6 ft) 

Using Equation 1.1, the shear in the slab at the ultimate moment state is calculated 

to be 6.2 kips for a 1-ft wide deck section.  Therefore, approximately 90 ft of the deck 

slab, or 76% of the span length, is required to resist the 554-kip force.  This result 

indicates that the slab has the flexural capacity to transfer the force to the other girder 

provided that the slab can behave in a ductile manner and distribute the force along the 

length of the girder.         

The second criteria checked for the deck slab was the shear capacity.  There is no 

shear reinforcement in the deck slab; therefore, the shear capacity of the slab is based 

solely on the shear resistance of the concrete.  The shear capacity of the slab was 

calculated using the following equation from the ACI 318 Building Code: 

bdfV cc
'2=           Equation 1.2 

where:   Vc = nominal shear strength provided by concrete (lb) 

  fc' = specified compressive strength of concrete (= 4,000 psi) 

  b = width of section (= 12 in.) 

  d = distance from extreme compression fiber to centroid of 

tension reinforcement (= 4.375 in.)   

The shear capacity calculated from Equation 1.2 was 6.6 kips for a 1-ft wide deck 

section.  Therefore, approximately 84 ft of the deck slab, or 71% of the span length, is 

required to resist the 554-kip force.  This result indicates that the shear capacity is 

adequate and that the flexural capacity will govern the deck strength. 
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1.3.5 Analysis of Composite Section 

Provided that both the shear studs and the deck slab can resist the required load, 

the remaining box girder must then have enough moment capacity to resist the entire load 

on the bridge.  This includes all of the dead load in addition to the live load that is placed 

on the bridge at the time of fracture.  In order to simplify the calculations, the girder was 

assumed to be straight – the FSEL girders are actually slightly curved – and the effect of 

torsion was neglected.  The plastic moment capacity of the composite section of the non-

fractured girder (Figure 1.6) was calculated assuming that the concrete strength was 4 ksi 

and that the yield strength of the steel girder was 50 ksi.  Refer to Appendix A for this 

calculation and the calculation of the maximum moment on the bridge at the time of the 

fracture test.             
b = 140 in.

 

Figure 1.6: Composite section of non-fractured girder 

The effective width of the concrete slab was equal to half of the total slab width.  

The plastic neutral axis was found to be in the web of the steel girder, and the plastic 

moment capacity was calculated to be 17,840 kip-ft.  The maximum moment on the 

bridge at the time of the fracture was calculated to be 8,950 kip-ft.  This calculation 

indicates that the composite section of a single box girder can withstand a moment that is 

approximately twice the moment on the bridge at the time of failure.  If the applied 
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moment is multiplied by two for the dynamic effect, then the remaining girder has 

exactly enough reserve capacity to support the entire weight of the bridge.  Recall that the 

dynamic amplification factor of 2.0 is an upper bound and is expected to be lower for the 

actual response.   

1.3.6 Summary 

The simple analysis techniques presented in this chapter have shown that the deck 

slab and the remaining box girder may be able to provide a redundant load path when one 

of the box girders experiences a full-depth fracture.  The third component that must be 

able to provide a redundant load path is the shear studs.  As is discussed in Chapter 2, the 

tensile capacity of the studs can be estimated using Appendix D in the ACI 318 Building 

Code, but the bridge haunch and the grouping of studs across the flange width create 

some uncertainty in this calculation.  A series of laboratory tests were conducted in order 

to determine the effect that the bridge haunch has on both the tensile capacity and the 

behavior of the studs.  The remainder of this thesis, beginning with Chapter 3, discusses 

these laboratory tests.          
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CHAPTER 2 

Strength of Concrete Anchors under Tensile Loading 

2.1 INTRODUCTION 

In Chapter 1, the simple analysis techniques used to determine if the FSEL test 

bridge might have the redundancy to withstand a full-depth fracture to one of the box 

girders were discussed.  The three components of the bridge that need to resist the load in 

the fractured girder were identified as the shear studs, the deck slab, and the remaining 

girder.  These calculations showed that the deck slab and remaining box girder may have 

the ability to resist the additional load.  This chapter will discuss the strength of concrete 

anchors loaded in tension and will use that information to determine if the shear studs on 

the FSEL test bridge can resist the required load during a fracture event.   

2.2 TENSILE STRENGTH OF CONCRETE ANCHORS 

2.2.1 Overview: ACI 318 Appendix D – Anchoring to Concrete 

In order to calculate the tensile capacity of the shear studs, Appendix D of the 

ACI 318 Building Code was referenced.  This appendix provides requirements for 

concrete anchors loaded in tension, shear, or a combination of tension and shear.  It 

covers a wide range of both cast-in-place anchors and post-installed anchors.  Cast-in-

place anchors include headed bolts, headed studs, and hooked bolts.  Post-installed 

anchors include expansion anchors and undercut anchors.  The shear studs used on a 

bridge are an example of cast-in-place headed stud anchors; thus, the remainder of this 

discussion will deal with the strength of headed stud anchors in tension.  A drawing of 

the headed stud used on the FSEL test bridge is shown in Figure 2.1.  Dimensions for 
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various stud sizes and the required minimum yield and tensile strengths are governed by 

Section 7.3 of the AASHTO/AWS D1.5 Bridge Welding Code.       

13
8"

3
8"

45
8"5" 7

8"
Fy,min = 50 ksi
Fu,min = 60 ksi

 
Figure 2.1: FSEL test bridge shear stud – 7/8-in. diameter x 5-in. long 

A headed stud anchor loaded in tension must be checked for four different failure 

modes.  These four failure modes are steel failure, concrete breakout failure, pullout 

failure, and concrete side-face blowout failure.  Each of these failure modes is shown in 

Figure 2.2.  Spacing, edge distance, and thickness requirements must also be satisfied in 

order to prevent a concrete splitting failure, which is also shown in Figure 2.2.   

 

Figure 2.2: Failure modes for anchors loaded in tension (ACI 318-05) 
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2.2.2 Steel Strength 

A steel failure will only occur if the ultimate strength of the steel can be reached 

prior to a concrete failure.  If this can occur, failure of a ductile steel element allows for 

significant redistribution of anchor forces to other anchors.  The equation for the steel 

strength of an anchor is given as: 

utasesa fnAN =         Equation 2.1 (ACI 318-05) 

where:   Nsa = nominal strength of an anchor in tension as governed by 

the steel strength (lb) 

  n = number of anchors in a group  

  Ase = effective cross-sectional area of anchor (in.2) 

  futa = specified tensile strength of anchor steel (psi) 

The steel strength of an anchor is based on the ultimate tensile strength rather than 

the yield strength because a large majority of anchor materials do not exhibit a well 

defined yield point (ACI 318-05).  The strength reduction factor (φ) for an anchor 

governed by the strength of a ductile steel element is 0.75 for tension loads.  The 

Commentary in the ACI 318-05 Code states that this factor may seem low, but it provides 

the same level of safety as applying a higher factor to the yield strength (ACI 318-05).      

2.2.3 Concrete Breakout Strength 

A concrete breakout occurs when the stud pulls out with a large prism or cone of 

concrete as shown in Figure 2.3.  It is a failure of the concrete rather than the steel 

anchor, and therefore can be a very brittle failure if no reinforcement is present to 

intersect the failure prism.  The ACI 318-05 Code equations for concrete breakout 

strength is based on the concrete capacity design (CCD) approach, which assumes a 

concrete failure prism with an angle of approximately 35° as shown in Figure 2.3 (a).  
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The projected failure area of the prism is a square with lengths equal to three times the 

effective embedment depth of the anchor.  Another approach for calculating the concrete 

breakout capacity is based on an assumed breakout cone with a 45° angle as shown in 

Figure 2.3 (b).        

  

 

 
   (a)         (b) 

Figure 2.3: Tensile breakout shape as idealized by: (a) CCD method (b) 45° cone 
method (Shirvani, Klingner, and Graves III, 2004) 

A large number of experimental tests performed on anchors in uncracked concrete 

found that the CCD approach provided an accurate prediction of the tensile capacity 

while the 45° cone method was less accurate and at times unconservative (Fuchs, 

Eligehausen, and Breen, 1995).  In addition to providing better results, the CCD approach 

is also more user-friendly for design.  Therefore, the CCD method is the approach that 

has been adopted by the ACI 318 Code.     

Additional research has shown that the concrete breakout strength of headed stud 

anchors is reduced by approximately 25% when the stud is located in a region of a 

member where there is concrete cracking (Eligehausen and Balogh, 1995).  Therefore, 

the design equations for concrete breakout assume cracked conditions, but they can be 

adjusted for uncracked conditions through the use of a modification factor.  The nominal 
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concrete breakout strength of an anchor or group of anchors in tension is given by the 

following equations: 

For a single anchor: 

bNcpNcNed
Nco

Nc
cb N

A
A

N ,,, ψψψ=     Equation 2.2 (ACI 318-05) 

For a group of anchors: 

bNcpNcNedNec
Nco

Nc
cbg N

A
A

N ,,,, ψψψψ=    Equation 2.3 (ACI 318-05) 

where:  Ncb = nominal concrete breakout strength in tension of a single 

anchor (lb) 

Ncbg = nominal concrete breakout strength in tension of a group 

of anchors (lb) 

  ANc = projected concrete failure area of an anchor or group of 

anchors loaded in tension (in.2) 

  ANco = projected concrete failure area of one anchor when not 

limited by edge distance or spacing (= 9hef
2) (in.2)  

  ψec,N = modification factor to account for eccentric loading of  

groups (<1.0 for eccentric loading, =1.0 for no eccentricity) 

  ψed,N = modification factor to account for edge distances smaller 

than 1.5hef (= 1.0 if edge distance is greater than 1.5hef) 

ψc,N = modification factor to account for cracking (= 1.25 if 

analysis indicates no cracking; otherwise = 1.0) 

  ψcp,N = modification factor applicable only to post-installed 

anchors (= 1.0 for cast-in anchors) 

Nb = basic concrete breakout strength in tension of a single 

anchor in cracked concrete (lb) 
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 The equation for the basic concrete breakout strength of a single anchor in 

cracked concrete (Nb) is shown in Equation 2.4.  The capacity obtained from this equation 

is adjusted by the design equations (Equation 2.2 and Equation 2.3) to account for other 

factors such as group effects, edge distances, uncracked members, and eccentric loadings.   

5.1'
efccb hfkN =      Equation 2.4 (ACI 318-05) 

where:  kc = 24 for cast-in-place anchors 

  fc’ = specified compressive strength of concrete (psi) 

   hef = effective anchor embedment depth – distance from base 

of stud to underside of the head (= 4-5/8 in. for a 5-in. stud) 

To calculate the capacity of multiple studs in a group, the capacity of a single stud 

cannot simply be multiplied by the number of studs in the group.  When the distance 

between studs becomes less than 3hef, there is a group effect because the projected failure 

areas of the studs overlap.  Thus, the projected failure area of a group with n studs 

becomes less than n times the projected failure area of a single stud.  The concrete 

breakout strength equation (Equation 2.3) accounts for multiple anchors in a group by 

multiplying the basic breakout strength of a single anchor by the projected failure area of 

the group over the projected failure area of a single stud (ANc/ANco).  Examples of 

projected failure areas for multiple studs behaving both independently and as a group are 

shown in Figure 2.4.  This figure shows that closely spacing three studs results in a 

projected failure area that can be much less than the projected failure area of three studs 

behaving independently.  Thus, those three studs will have a tensile capacity that is much 

less than the tensile capacity of three studs behaving independently.       
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3hef

s s1.5hef 1.5hef
s < 3hef

3hef

3hef

3hef3hef

s s ss
s < 3hef s > 3hef

(a) (c)

(b) (d)  

Figure 2.4: Multiple studs behaving as a group – (a) projected failure area (b) section 
through failure prism; multiple studs behaving independently – (c) projected failure 

areas (d) section through failure prisms  

The concrete breakout strength of an anchor or group of anchors must also be 

reduced if a stud is located near an edge.  When an anchor is located less than a distance 

of 1.5hef away from an edge, the full breakout prism cannot develop.  The concrete 

breakout equation (Equation 2.3) accounts for this effect in both the calculation of the 

projected failure area and the edge modification factor.  An example of an anchor located 

near an edge and its projected failure area is shown in Figure 2.5.  This figure shows that 

the projected failure area, and thus capacity, can be significantly less when a stud is 

located near an edge. 
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Edge

c 1.5hef

c 1.5hef

(a) (b)

3hef

 

Figure 2.5: Edge reduction (c < 1.5hef) – (a) section through failure prism (b) projected 
failure area 

The capacity of anchors located near an edge is further reduced by the 

modification factor for edge effects, ψed,N.  If the edge distance is greater than 1.5hef, this 

factor is taken as 1.0.  However, when the edge distance is less than 1.5hef, the 

modification factor is reduced to a value less than 1.0.  As the edge distance becomes 

very small, this factor approaches 0.7.  Therefore, specimens with very small edge 

distances can experience as much as a 30% decrease in capacity.  The equation used to 

calculate the edge distance modification factor is as follows:   

ef

a
Ned h

c
5.1

3.07.0 min,
, +=ψ     Equation 2.5 (ACI 318-05) 

where:  ca,min = smallest edge distance measured from center of an anchor 

shaft to the edge of concrete (in.) 
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2.2.4 Pullout Strength 

A pullout failure differs from a concrete breakout failure in that the stud pulls out 

only the small volume of concrete directly under the stud head rather than a large prism 

or cone of concrete.  The equation for the pullout strength of an anchor loaded in tension 

is given as: 

'
, 8 cbrgPcpn fAN ψ=      Equation 2.6 (ACI 318-05) 

where:  Npn  = pullout strength in tension of a single anchor (lb) 

ψc,P = modification factor for cracking (= 1.4 if analysis 

indicates no cracking; otherwise = 1.0) 

  Abrg = bearing area of the head of the stud (in.2) 

This equation is a function of the compressive strength of the concrete and the 

bearing area of the stud head, but not the effective embedment depth.  This is because the 

equation corresponds to the load at which the concrete under the anchor head begins to 

crush, not the load which will completely pull the anchor out of the concrete.  However, 

local crushing under the head greatly reduces the stiffness of the connection and is 

usually the beginning of a pullout failure (ACI 318-05).        

2.2.5 Concrete Side-Face Blowout Strength 

A concrete side-face blowout failure can occur when an anchor with deep 

embedment is located close to an edge.  A concrete side-face blowout failure differs from 

a concrete breakout failure because the stud does not actually pull out with a large 

volume of concrete.  Rather the side concrete between the stud and the edge breaks off 

(Figure 2.2).  If a single headed anchor is located a distance less than 0.4hef away from an 

edge, the following equation must be checked: 

'
1160 cbrgasb fAcN =      Equation 2.7 (ACI 318-05) 
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where:   Nsb = side-face blowout strength of a single anchor (lb) 

  ca1 = distance from center of anchor shaft to the edge (in.) 

When multiple studs with deep embedment are located close to an edge (ca1 < 

0.4hef), the nominal concrete side-face blowout capacity is given as: 

sb
a

sbg N
c
sN ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

16
1       Equation 2.8 (ACI 318-05) 

where:   Nsbg = side-face blowout strength of a group of anchors (lb) 

  s = spacing of the outer anchors along the edge (in.) 

2.3 CAPACITY OF A ROW OF STUDS ON THE FSEL TEST BRIDGE 

The shear studs on the FSEL test bridge are grouped transversely across the width 

of the top flanges in rows of three.  These rows are spaced longitudinally along the length 

of the girder at approximately 22 in.  The FSEL test bridge also has a haunch, which is a 

standard detail in composite bridges.  The height of this haunch is 3 in., which is the 

maximum allowable haunch height that can be used on a bridge with 5-in. long studs.  

This detail is based on both AASHTO and TxDOT specifications that require the studs to 

extend a minimum of 2 in. above the haunch into the deck slab.  The details of the haunch 

and the rows of studs are shown in Figure 2.6.  The deck reinforcement is not shown in 

this figure.   
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Figure 2.6: Shear stud detail for FSEL test bridge 

The haunch produces a pseudo-edge effect.  Clearly, the full breakout prism 

cannot develop, but the edge is not a true edge.  The edge is only 3 in. high, and above 

that point the concrete extends well beyond 1.5hef.  The concrete breakout strength for 

this detail is bracketed by the lower bound strength, which assumes that there is an edge 

1.5 in. away from the outer studs, and the upper bound strength, which assumes that the 

breakout strength is not reduced by any edge effect.  If the concrete breakout prism forms 

at the same 35° angle, the prism would intersect the bottom of the slab only slightly past 

the haunch edge as shown in Figure 2.7.  Based on this fact, the concrete breakout 

strength will most likely be closer to the lower bound strength calculated assuming that 

the haunch represents an edge.     
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Figure 2.7: Concrete breakout prism following 35° angle 

The tensile capacity for the different failure modes was calculated for a single row 

of studs on the FSEL test bridge.  The steel strength of the studs was based on the 

minimum required tensile strength set forth by the AASHTO/AWS D1.5 Bridge Welding 

Code.  The concrete breakout capacity was calculated assuming that the haunch was an 

edge.  Concrete side-face blowout was not calculated because it was assumed that this 

failure could not occur due to the fact that the edge does not extend above the height of 

the stud.  The result of these calculations is shown in the following equations: 

Steel Strength: 

)000,60(.)875.0(
4

3 2 psiinfnAN utasesa
π

==  = 108,240 lb 

Concrete Breakout: 

lbinpsihfkN efccb 100,15.)625.4(4000)24( 5.15.1' ===  
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Pullout (of 1 stud): 

)000,4)(.)875.0(.)375.1((
4

)8)(0.1(8 22'
, psiininfAN cbrgpcpn −==

πψ  = 28,270 lb 

These calculations show that concrete breakout is clearly the governing failure 

mode.  Even if it was assumed that the haunch had no effect, concrete breakout would 

still be the governing failure mode.  The estimated breakout capacity of a row of studs 

(Ncbg) on the FSEL test bridge was rounded to 10 kips.  The modification factor for 

eccentric loading (ψec,N) was taken as 1.0 because the load is not applied eccentrically, 

and the modification factor for cracking (ψc,N) was taken as 1.0 because it was assumed 

that the deck slab will be cracked after the fracture.   

A summary of the estimated tensile capacities is shown in Table 2.1.  The effect 

of slab cracking is demonstrated by comparing the estimated capacities in cracked 

concrete to those in uncracked concrete.  The effect of the bridge haunch is demonstrated 

by comparing the capacity of a single stud with a row of studs on the FSEL test bridge 

both with and without the haunch. 

Table 2.1: Estimated tensile capacities for a single stud and a row of three studs on the 
FSEL test bridge (fc’ = 4,000 psi; 7/8-in. diameter x 5-in. long studs; futa = 60,000 psi)  

Cracked Concrete Uncracked Concrete
15.1 18.9
24.9 31.1
12.5 15.7
10.0 12.5
28.3 39.6
84.8 118.7
36.1 36.1

108.3 108.3Row of 3
Single

Stud Pullout

Failure Mode Number of 
Studs

Estimated Tensile Capacity (kip)

Row of 3
Single

Row of 3
Single

Row of 3
Single

Stud Fracture

Concrete 
Breakout

No Haunch

3" Haunch
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If a single row of studs can resist 10 kips, then 56 rows of studs are required to 

resist the 554-kip force from the fractured girder.  The stud rows are spaced at 22 in.; 

therefore, 103 ft, or 87% of the span length, is required to resist the 554-kip force.  

Spreading the force among 56 rows assumes that the studs can behave in a ductile 

manner and redistribute the force along the length of the girder.  However, a concrete 

breakout failure is governed by brittle failure of the concrete.  This aspect of the response 

may prevent the 554-kip force from being distributed among such a large percentage of 

the span length.        

2.4 SUMMARY 

The calculations in this chapter have shown that the governing failure mode for a 

row of shear studs on the FSEL test bridge is a concrete breakout failure.  The concrete 

breakout capacity of a row of three studs is greatly reduced when the studs are located 

close to an edge.  The haunch used in bridge construction produces a pseudo-edge very 

close to the outer studs in the row.  Therefore, it is assumed that the capacity of a row of 

studs will be reduced, but the magnitude of the reduction can only be estimated using the 

ACI 318 equations.  Furthermore, while the strength of the studs appears to be adequate, 

the studs may not be able to redistribute forces along the span due to the brittle nature of 

a concrete breakout failure.   

The remainder of this thesis will discuss the laboratory tests that were performed 

to determine the effect that the bridge haunch has on both the capacity and the behavior 

of the shear studs loaded in tension.  The laboratory tests will also include the effect of 

slab cracking due to a moment being applied to the deck slab in addition to the tensile 

force acting on the studs.   
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CHAPTER 3 

Testing Program 

3.1 INTRODUCTION 

The bridge haunch creates a great deal of uncertainty in the calculation of the 

tensile capacity of the shear studs.  The haunch is assumed to have a detrimental effect 

because the full volume of the concrete breakout prism cannot be developed.  The goal of 

this testing program is to quantify the effect that the haunch has on the tensile capacity of 

the shear studs.   

Pullout tests were performed on 12 reinforced bridge deck sections.  Half of these 

deck sections were constructed with a haunch, while the other half have no haunch.  The 

number of studs was varied for both the specimens with and without a haunch.  For the 

specimens with a haunch, increasing the number of studs decreases the spacing between 

the studs and the edge of the haunch.  Theoretically, as this edge spacing decreases, the 

capacity will decrease.  For the specimens without a haunch, increasing the number of 

studs should increase the capacity because the volume of concrete in the breakout failure 

prism is increased.   

When one of the bridge girders fractures, that girder will drop down, loading the 

studs in tension and also loading the deck slab in bending.  This situation is duplicated in 

the laboratory tests.  The studs will be loaded in tension, but the tension force used to 

load the studs also creates a bending moment in the slab.  However, it is important to 

realize that test setup will not exactly replicate the situation in the bridge.  Prior to a 

fracture, the deck slab of the bridge experiences compressive stresses due to the 
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longitudinal bending of the composite section.  The deck sections tested in the laboratory 

do not have any initial stresses in the slab due to longitudinal bending.                 

3.2 TEST SPECIMENS 

3.2.1 Specimen Details 

Six unique reinforced composite deck sections were tested.  A duplicate of each 

specimen was tested for a total of 12 tests.  Half of the specimens were constructed with a 

3-in. haunch while the other half was constructed with no haunch.  When selecting the 

dimensions and details to be used in the specimens, every effort was taken to replicate the 

details built into the full scale test bridge at FSEL, which uses typical TxDOT bridge 

deck details.  Refer to Appendix B for the TxDOT details and the deck slab details of the 

test bridge at FSEL, from which all of the specimen details were based.  Refer to 

Appendix C for the detailed drawings of all six unique specimens. 

When a fracture occurs in one girder, that girder will deflect so that the deck slab 

is bending in double curvature with the inflection point approximately midway between 

the girders as shown in Figure 3.1.  When this happens, the bending stresses occur in the 

transverse direction of the deck slab.  The test specimens were designed so that the 

tension force applied to the studs would also create a bending moment in the deck slab 

transverse direction.     
Mn+

Mn-

3 ft 3 ft

 
Figure 3.1: Bridge slab in double curvature 
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The deck sections tested in the laboratory were 7-ft long by 2-ft wide.  Although 

the 7-ft length would typically be considered the longitudinal direction, this length 

actually corresponds to the transverse direction of the FSEL test bridge.  In order to be 

consistent with the FSEL test bridge, the longitudinal direction of the test specimens will 

be referred to as the transverse direction, and vice versa, throughout the remainder of this 

thesis.  The naming of the longitudinal and transverse directions is clarified in Figure 3.2. 

#5 Bar#4 Bar

7 ft

2 ft

PLAN

SECTION SIDE

Deck Slab Transverse Direction (7 ft)

Deck Slab Longitudinal Direction (2 ft)

#4 Bar#5 Bar

 

Figure 3.2: Transverse and longitudinal directions of test specimens 

The steel sections were cut to a 2-ft length, and the row of studs was welded at the 

center of this length.  The 2-ft length was chosen because the longitudinal spacing of the 

studs on the FSEL test bridge is approximately 2 ft.  This 2-ft length also allows for the 

full concrete breakout prism to develop in the longitudinal direction for all specimens.  

The span length was selected based on the deflected shape of the deck slab during the 

fracture event.  As shown in Figure 3.1, when the deck slab bends in double curvature, 
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the maximum moment in the deck slab occurs at the shear stud connection, and the 

distance between the inflection point and the studs is approximately 3 ft.  The test 

specimens were tested as simply supported slabs with a tension force loading the studs at 

the mid-span.  This arrangement allowed the maximum moment to occur at the location 

of the stud connection.  The span length of approximately 6 ft was chosen because it 

corresponds to 3 ft from the point of zero moment to maximum moment as is the case 

when the deck slab bends in double curvature.  The 7-ft overall length was chosen so that 

an adequate bearing length was available at each end.  The 6-ft span is also long enough 

to assure that an adequate moment is present in the slab, but short enough that a tension 

failure of the studs will occur before a bending failure of the slab. 

The slab thickness was chosen to be 8 in. because it matches the thickness of the 

deck slab on the FSEL test bridge.  The size and spacing of the slab reinforcement was 

based on the typical TxDOT deck slab details, which are also used in the FSEL test 

bridge.  The reinforcement consisted of a top and bottom mat of reinforcing steel with 

bars running in both the transverse and longitudinal directions as also shown by Figure 

3.2.  The top and bottom transverse bars and the bottom longitudinal bars are all #5 bars.  

The top longitudinal bars are all #4 bars.  The transverse bars are spaced at 6 in., and the 

longitudinal bars are spaced at 9 in.  The clear cover was 1.25 in. and 2 in. to the bottom 

and top reinforcing mat, respectively. 

The steel section used for each specimen is a WT6x39.5.  This section was 

selected because the top flange width, top flange thickness, and web thickness of the 

WT6x39.5 very closely matches the top flange width, top flange thickness, and web 

thickness of the box girders on the FSEL test bridge.   

The studs used in the test specimens had a diameter of 7/8 in. and a length of 5 in.  

These stud dimensions were selected to match the studs used in the FSEL test bridge.  
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The 3-in. haunch height, built into half of the specimens, was chosen because it matches 

the haunch height on the FSEL test bridge and because it is the largest allowed by 

TxDOT standard details.  Standard TxDOT (and AASHTO) details require that the stud 

extend a minimum of 2 in. above the haunch into the slab.  Thus, for 5-in. long studs, the 

maximum allowable haunch height is 3 in.   

The number of studs was varied between one and three for each haunch height.  

The studs were grouped transversely across the WT section at the center of the 

longitudinal (2-ft) length.  For the specimens with two studs, the studs were evenly 

spaced across the width of the top flange.  For the specimens with three studs, the typical 

TxDOT detail was followed.  The TxDOT detail for a group of three studs calls for a 

spacing of 2 in. between the center of the outer studs and the edge of the flange width.   

The specimen identification, haunch height, and number of studs for each 

specimen are given in Table 3.1.  Note that, for example, 0-1a and 0-1b refer to the 

duplicates of the 0-1 specimen, which has a 0-in. haunch height and 1 stud.   

Table 3.1: Specimen identification and details 

Specimen ID Haunch Height (in.) Number of Studs
0-1 a, b 0 1
0-2 a, b 0 2
0-3 a, b 0 3
3-1 a, b 3 1
3-2 a, b 3 2
3-3 a, b 3 3  

Figures 3.3 and 3.4 show the details of the specimens with no haunch and with a 

3-in. haunch, respectively.  These drawings show the details at the mid-span of each 

specimen where the studs connect to the slab.  For clarity, these drawings only show the 

transverse deck reinforcement bars and not the longitudinal deck reinforcement bars. 
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Figure 3.3: Details for specimens with no haunch 
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Figure 3.4: Details for specimens with 3-in. haunch 
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3.2.2 Stud Welding 

The shear studs were welded to the WT sections using standard stud welding 

processes as shown in Figure 3.5 (a).  This task was sub-contracted to a commercial stud 

welder in order to assure quality welds.  The strength of the weld is required to be 

stronger than the strength of the stud.  A simple way to test that the weld meets this 

requirement is to use a hammer to bend over the stud as shown in Figure 3.5 (b).  If the 

weld fails before the stud bends over, then the weld is no good.  However, if the stud 

bends over without failing at the weld, then the stud will reach its yield point before the 

weld will fail.  A successful bend over test (Figure 3.5 (b)) was performed on a stud 

welded to a scrap WT section prior to welding the studs to the actual test specimens. 

   

   (a)      (b) 

Figure 3.5: (a) Stud welding; (b) bend over test 

3.2.3 Formwork 

Formwork was constructed so that all 12 specimens could be cast at the same 

time.  Two sets of forms were built, each with the capability of casting six specimens at a 

time.  One set was built to provide a 3-in. haunch while the other set was built for the 
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specimens with no haunch.  Figure 3.6 shows these two sets of forms after the WT 

sections have been put in place, but prior to the placement of the reinforcement cages. 

   

   (a)      (b) 

Figure 3.6: Formwork for specimens with (a) no haunch (b) 3-in. haunch 

3.2.4 Concrete Mix 

The concrete mix used for the test specimens was the equivalent of TxDOT Class 

“S” Concrete.  Class “S” Concrete is required to have a minimum compressive strength 

of 4,000 psi and a maximum water-to-cement ratio of 0.45.  The size of the coarse 

aggregate in this mix ranges between 3/4 in. and 1-1/2 in.       

During the casting of the specimens, concrete cylinders were cast in order to 

verify the strength of the concrete at various periods throughout the testing program.  

Testing did not begin until after the concrete had reached its 28-day strength.  Cylinders 

were tested when the testing period began, half-way through the testing period, and after 

all testing was completed.  These three testing dates corresponded to the 38-day strength, 

49-day strength, and 59-day strength, respectively. 
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3.3 TEST SETUP 

Each specimen was loaded as a simply supported slab with a point load in the 

center as shown in Figure 3.7.  At each end, 6 in. of the 7-ft total specimen length rested 

on elastomeric bearing pads.  Thus, the distance between the inside edge of the bearing 

pads was 6 ft.  The reaction is assumed to be at the center of the bearing length so the 

span of each slab was actually 6 ft-6 in., which is 6 in. greater than the span length 

discussed in the previous section.  However, this extra span length does not significantly 

change the behavior of the test specimens as it only increases the mid-span moment by 

approximately 8%.  The bearing pads were placed 2 in. from the inside edge of the 

reaction blocks in order to permit as much rotation as possible during the test.  A 

hydraulic ram was anchored to the strong floor directly under the center of the slab.  A 

bolt hole was punched in the center of the web of the steel section of each specimen.  

Connector plates provided a pin connection between the WT and the clevis attached to 

the top of the hydraulic ram piston rod.     

 

Figure 3.7: Test setup 
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3.4 INSTRUMENTATION 

3.4.1 Shear Studs 

Each of the shear studs was instrumented with a special purpose bolt gage.  These 

gages are typically used to measure the tensile strain in a bolt, but in this case they have 

been installed in the shear studs to serve the same purpose.  For the specimens with two 

or three studs, the results from the stud gages will provide the distribution of the tensile 

force among the studs.   

To install the bolt gages, a 2-mm-diameter hole is drilled in the center of the stud 

head.  The hole must extend far enough into the shaft of the stud so that the gage can be 

placed below the stud head.   During installation the drilled hole is filled with a high-

strength bonding adhesive.  The gage, which has a backing width of 1.7 mm, is then 

inserted into the hole.  The adhesive is allowed to cure at room temperature for a period 

of 12 hours and then must be raised to an elevated temperature for additional curing.  

Figure 3.8 shows the installation of a stud gage and the typical placement of the gage in 

the stud.        

  

Figure 3.8: (a) Stud gage installation 

Special purpose 
bolt gage 
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   (b)            (c) 

Figure 3.8 (cont.): (b) shear stud after gage installation; (c) drawing of typical stud 
gage placement 

3.4.2 Reinforcing Steel 

Each transverse reinforcing bar in both the top and bottom mat was instrumented 

with two general purpose foil gages.  The gages were placed so that the location would 

correspond with the mid-span and the quarter-span of the slab.  These gages measured the 

strain in the reinforcing steel, which can be used to determine the strain profile in the 

slab.  These gages also show if the reinforcing steel in the slab begins to yield prior to a 

tension failure of the studs.  Figure 3.9 shows the reinforcing cage in place in the forms 

with the gages installed.  The yellow wrap around each gage is a protective coating tape 

that allows the gage to survive the casting of the concrete slabs without any damage.     
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Figure 3.9: Instrumentation of reinforcing steel 

Figure 3.10 shows a plan view of a typical slab with the labeling system used for 

the gages on the reinforcement bars.  Gages numbered 1-4 are located at the quarter-span, 

and gages numbered 5-8 are located at the mid-span.  The “T” and “B” suffixes refer to 

the gage on the top bar and the bottom bar, respectively.  Longitudinal reinforcement bars 

are not shown in this figure. 

 

Figure 3.10: Labeling of gages on steel reinforcing bars 
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3.4.3 Load and Displacement 

During each test the applied tensile force was measured with a load cell that was 

attached to the hydraulic ram.  A threaded adaptor connected the piston rod to the bottom 

side of the load cell, and another threaded adaptor connected the top side of the load cell 

to the clevis.  Figure 3.11 shows a close-up view of the attachment of the load cell to the 

hydraulic ram.  At the other end, the connector plates attach to the hole punched in the 

web of the WT section.     

 

Figure 3.11: Attachment of load cell 

Displacements were measured using three linear potentiometers.  One linear 

potentiometer was used to measure the slab deflection at mid-span.  Two other linear 

potentiometers were used to measure the separation of the WT top flange and the bottom 

of the slab.  One was placed on each side of the slab, and the average of the two 

measured values was taken as the displacement of the stud pulling out of the slab.  Figure 

3.12 shows one of these linear potentiometers.  The linear potentiometer is clamped to the 
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web of the steel section and it measures the relative displacement of the steel section 

from the top of the slab.  The deformation includes the displacement of the bottom of the 

concrete relative to the top of the slab. 

 

Figure 3.12: Linear potentiometer measuring separation between the slab and WT 

3.5 TESTING PROCEDURE 

Prior to a test, the hydraulic ram was extended and the connector plates were used 

to attach the ram to the WT section.  At this point, all gages and instruments were zeroed, 

and the data acquisition system began recording the values measured by the 

instrumentation.  Using an air-powered hydraulic pump to control the loading rate, the 

ram began to pull down on WT section, loading the studs in tension and creating a 

bending moment in the slab.  Periodically, the loading was stopped to inspect the 

specimen and to map cracks in the concrete slab.  The loading continued until the 

specimen failed as a result of a tension failure of the studs.  Failure was assumed to have 

taken place when the specimen lost the ability to hold load.  The tests did not continue 
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until the WT and studs completely pulled out of the concrete slab because there was 

concern that the hydraulic ram and other instrumentation might be damaged by such a 

failure.  However, in general, the tests did not stop until specimens appeared to be very 

close to complete pullout of the studs.  Figure 3.13 shows a picture of the test setup with 

the hydraulic pump and the data acquisition system visible.          

 

Figure 3.13: Test setup, hydraulic setup and data acquisition system 
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CHAPTER 4 

Test Results 

4.1 GENERAL COMMENTS 

All specimens experienced a tension failure by concrete breakout.  In each test, 

the slab did not experience much plastic deformation, and thus it can be presumed that 

there was reserve flexural capacity in the slab remaining at the time of the failure.  All of 

the A-specimens were tested first, and then the B-specimens were tested in the same 

order.  With one exception, the B-specimens reached a slightly higher capacity than the 

corresponding A-specimens.  This outcome is attributed to the fact that the concrete 

strength increased slightly over the testing period.  Table 4.1 shows the testing order and 

the test date of the specimens.   

Table 4.1: Testing order 

Specimen Test Date
3-1 a 25-Jan-07
3-2 a 26-Jan-07
3-3 a 30-Jan-07
0-1a 30-Jan-07
0-2 a 01-Feb-07
0-3 a 02-Feb-07
3-1 b 06-Feb-07
3-2 b 08-Feb-07
3-3 b 08-Feb-07
0-1 b 13-Feb-07
0-2 b 13-Feb-07
0-3 b 15-Feb-07  
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4.2 CAPACITY 

    The maximum load carried by each specimen is shown in Table 4.2.  As 

predicted by the ACI equations, the specimens with a 3-in. haunch lost capacity as the 

number of studs in the row increased.  The reduction of strength is related to the distance 

of a stud to an edge.  The reduction for a stud located very close to an edge is greater than 

the reduction of a stud located farther away from the edge.  The specimens with only one 

stud resisted the largest load prior to failure because the distance to the edge of the 

haunch was largest in these specimens.  The specimens with three studs had a reduced 

distance between the outside studs and the edge of the haunch, and so those specimens 

carried the lowest load.   

The specimens with no haunch were able to develop the full volume of the 

concrete breakout prism and thus did not suffer any reduction in strength.  Adding studs 

increased the volume of the breakout prism, and the specimens experienced an increase in 

strength as the number of studs in the row increased.     

Table 4.2: Maximum load resisted by each specimen 

A 23.4
B 21.2
A 18.5
B 19.9
A 16.4
B 18.2
A 20.4
B 21.3
A 23.8
B 25.3
A 25.6
B 26.2

Maximum Load 
(kip)

Average Maximum 
Load (kip)

3" 
Haunch

No 
Haunch

Specimen

2 studs 24.6

3 studs 25.9

3 studs 17.3

1 stud 20.9

1 stud 22.3

2 studs 19.2
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The results in Table 4.2 show that the presence of a haunch can significantly 

reduce the tensile capacity of a group of studs.  For the specimens with only one stud, the 

breakout capacity with a haunch and without a haunch is very close.  In this case, the 

specimens with a haunch actually reached slightly higher average maximum load than the 

specimens without a haunch.  However, the strengths of the two-stud and three-stud 

specimens without a haunch were considerably higher than the two-stud and three-stud 

specimens with a haunch.   

The 3-in. haunch specimens with two and three studs show a large drop in the 

breakout capacity when compared to the specimens with a haunch and only one stud. The 

average capacity dropped 14% for the specimens with two studs and 23% for the 

specimens with three studs.  Conversely, the specimens without a haunch showed an 

increase in strength when the number of studs was increased.   However, the increase in 

tensile strength is small, less than 25% for the three stud test versus the single stud test.   

4.3 BEHAVIOR AT FAILURE 

4.3.1 Specimens with a Haunch 

Each specimen with a 3-in. haunch failed in a very sudden, brittle manner and 

exhibited very little ductility.  These specimens reached a maximum load, failed 

suddenly, and immediately lost all ability to carry load.  Figure 4.1 shows a plot of the 

applied load versus the stud pullout deflection for a specimen with one stud.  The plot 

shows that the specimen reaches a maximum load and then fails very suddenly with the 

next data point down near 0 kip.  This plot is typical of all of the specimens with a 3-in. 

haunch.   
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Figure 4.1: Specimen 3-1b – Applied load versus stud pullout deflection 

Each of the specimens with a haunch behaved and failed in a very similar manner.  

Flexural cracking occurred early in each test with the first flexural cracks forming on 

both sides of the haunch, where the top of the haunch and the bottom of the slab meet as 

shown in Figure 4.2.  The specimens with one stud had the most flexural cracking while 

the specimens with three studs saw the least amount flexural cracking.  This behavior is 

due to the fact that the specimens with one stud failed at the highest load, while the 

specimens with three studs failed at the lowest load.  Flexural cracks did not occur in the 

haunch region in any of the specimens with a 3-in. haunch.  This result is attributed to the 

increased slab thickness, and thus moment of inertia, in that area.     
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Figure 4.2: Initial cracking in specimen with a 3-in. haunch 

At failure, a large crack opened at the center of the haunch, even with the row of 

studs, and split the haunch in two as shown in Figure 4.3 (a).  The two cracks at the 

intersection of the bottom of the slab and top of the haunch also expanded horizontally, as 

shown in Figure 4.3 (b).  Figure 4.3 (c) shows a specimen with two studs, in which the 

haunch region and studs completely separated from the bottom of the slab.  Notice in this 

photograph that the haunch concrete is plain concrete.  No reinforcing steel runs through 

the haunch, which is why the failure of the specimens with no haunch is a sudden, brittle 

failure.     
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   (a)      (b) 

 

(c) 

Figure 4.3: Specimens with a 3-in. haunch – (a) Center crack at failure; (b) horizontal 
cracking across top of haunch; (c) complete separation of haunch 

4.3.2 Specimens with No Haunch 

The specimens with no haunch experienced some ductility at failure because 

reinforcing bars run through the concrete breakout prism.  Rather than reaching a 

maximum load and losing all load carrying ability, the specimens with no haunch 

gradually softened after reaching their maximum load.  After the specimens reached the 

maximum load, the stud slowly began to pull out of the slab.  The stud gradually lost load 

Center 
crack 

Haunch concrete



 48

as the pullout deflection increased.  Figure 4.4 demonstrates the gradual loss of load 

carrying capability for one of the specimens with three studs.  This trend was seen in all 

of the specimens with no haunch. 
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Figure 4.4: Specimen 0-3b – Applied load versus stud pullout deflection 

The specimens with no haunch displayed cracking more consistent with the 

theoretical prism breakout failure mechanism.  In addition, flexural cracking in the slab 

was more prevalent in the specimens with no haunch.  The ductility at failure was due to 

the reinforcement bars providing some confinement as the breakout prism formed.  The 

ductility at failure was not a result of plastic deformations of the deck slab, as there was 

not much evidence of plastic deformation of the deck slab during any of the tests.  The 

response of the deck slab is discussed further in Section 4.5 and 4.6.  Figure 4.5 depicts 

the increased amount of flexural cracking and the cracking consistent with the breakout 

failure mechanism.       
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   (a)      (b) 

 

(c) 

Figure 4.5: Specimens with no haunch – (a) Increased flexural cracking; (b) breakout 
prism cracking as seen from underside of specimen; (c) formation of breakout prism 

4.4 STUD GAGE DATA  

4.4.1 Analysis of Data 

The data recorded by the stud gages can be used to show the distribution of the 

applied tensile force among the shear studs.  The specimens with only one stud can be 

used as a control because in these cases the tension force in the stud should be equal to 
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the applied tensile force measured by the load cell.  In the specimens with multiple studs, 

the summation of the forces in each stud should be equal to the applied tensile force.  In 

order to determine the stress in each stud, the strain recorded by the stud gage is 

multiplied by the modulus of elasticity of steel (29,000 ksi).  That value of stress is then 

multiplied by the cross-sectional area of the stud to determine the tensile force present in 

the stud.  Once the force in each stud is determined, the sum of the forces in each of the 

studs in the row can be obtained.  If the gages are measuring the strains accurately, this 

summation should correspond fairly well to the applied force measured by the load cell.   

4.4.2 Specimens with a Haunch 

Table 4.3 shows the stud forces calculated at maximum load for the specimens 

with a 3-in. haunch.  Note that the left stud of Specimen 3-2a and the right stud of 

Specimen 3-3a are shown in bold.  These gages did not function properly during their 

respective tests.  The force in these studs was set equal to the symmetrical stud in the 

specimen.  This assumption was based on the symmetrical behavior of the replicate B-

specimens. 

Table 4.3: Stud gage data at maximum load for specimens with a 3-in. haunch 

3-1 a Center 0.001250 36.3 72.5 21.8 21.8 23.4 -6.8
3-1 b Center 0.001238 35.9 71.8 21.6 21.6 21.2 1.8

Right 0.000485 14.1 28.1 8.5
Left 0.000485 14.1 28.1 8.5

Right 0.000490 14.2 28.4 8.5
Left 0.000465 13.5 27.0 8.1

Right 0.000214 6.2 12.4 3.7
Center 0.000419 12.2 24.3 7.3

Left 0.000214 6.2 12.4 3.7
Right 0.000208 6.0 12.1 3.6
Center 0.000466 13.5 27.0 8.1

Left 0.000237 6.9 13.7 4.1

% 
Difference

% of Yield 
Stress

Force 
(kip)

Sum of 
Forces (kip)

Actual 
Force (kip)Specimen Stud 

Location
Strain 
(in/in)

Stress 
(ksi)

-12.7

-9.9

-16.3

-8.6

3-3 b

3-3 a

3-2 b

3-2 a

15.9 18.2

16.9 18.5

19.916.7

14.8 16.4
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 This table shows that the stud forces calculated from the strain gages agreed fairly 

well with the applied force.  With one exception, the sum of the stud forces is less than 

the total applied force.  Recall that the stud gage is located just under the stud head as 

shown in Figure 4.6.  The majority of the tensile force resisted by the stud is due to the 

stud head bearing on the concrete; however, some force may be resisted by friction 

between the stud shaft and the concrete as shown in Figure 4.6.  The majority of this 

friction resistance would develop below the location of the gage, which may explain why 

the summation of the calculated stud forces tended to be slightly lower than the total 

applied force measured by the load cell.      

T

Bearing

Friction

 

Figure 4.6: Tensile resistance provided by shear stud 

In addition, Table 4.3 shows that the studs do not experience large stresses.  With 

the exception of the specimens with only one stud, the stress in the studs was less than 

30% of the specified yield stress, 50 ksi.  The specimens with one stud experienced 

stresses that are 70-75% of the yield stress. 

The table shows that the specimens with two studs exhibit an even distribution of 

the tensile force between the studs.  Figure 4.7 shows a plot of the total load versus the 
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calculated force in the studs for Specimen 3-2b, which has a 3-in. haunch and two studs.  

The force in each of the two studs is nearly identical throughout the entire test up until 

failure. 
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Figure 4.7: Specimen 3-2b – Applied load versus calculated force in the shear studs 

The stud gages in the specimens with three studs showed that approximately half 

of the applied tensile force is resisted by the center stud and that the remaining half is 

equally distributed between the two outer studs.  Figure 4.8 shows a plot of the applied 

load versus the calculated force in the studs for a specimen with three studs.  This plot 

shows that the force in the three studs is fairly uniform until approximately 7 kips, after 

which the center stud begins to resist a very large portion of the applied load.  This point 

represents the cracking load of the slab (See Section 4.5.1).  The slab cracks first at the 

haunch edges, which is very close to the outside studs.  The slab did not crack inside the 

haunch region.  Therefore, the center stud begins to resist more force after cracking 
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because the concrete around it has not cracked.  The outer studs start resisting less force 

because cracking has occurred and the breakout prism begins to form near these studs.    
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Figure 4.8: Specimen 3-3b – Applied load versus calculated force in the shear studs 

4.4.3 Specimens with No Haunch 

Table 4.4 shows the calculated stud forces for the specimens with no haunch.  

This table is additional confirmation that the stud gages are working very well.  The 

percent difference between the sum of the calculated forces in the studs and the actual 

applied force measured by the load cell is less than 10% for all but one of the specimens.  

This table also shows that the studs in the specimens with no haunch experience larger 

stresses.  However, the stresses in the studs are still less than 50% of the yield stress for 

the specimens with two and three studs, and less than 70% of the yield stress for the 

specimens with one stud.   
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Table 4.4: Stud gage data at maximum load for specimens with no haunch 

0-1 a Center 0.001180 34.2 68.4 20.6 20.6 20.4 0.9
0-1 b Center 0.001113 32.3 64.6 19.4 19.4 21.3 -8.9

Right 0.000657 19.1 38.1 11.5
Left 0.000858 24.9 49.8 15.0

Right 0.000624 18.1 36.2 10.9
Left 0.000698 20.2 40.5 12.2

Right 0.000292 8.5 16.9 5.1
Center 0.000573 16.6 33.2 10.0

Left 0.000518 15.0 30.0 9.0
Right 0.000286 8.3 16.6 5.0
Center 0.000662 19.2 38.4 11.5

Left 0.000471 13.7 27.3 8.2

Stud 
Location

Strain 
(in/in)

Stress 
(ksi)

% 
Difference

0-2 a 26.4 23.8 11.0

% of Yield 
Stress

Force 
(k)

Sum of 
Forces (k)

Actual 
Force (k)Specimen

0-2 b 23.1 25.3 -8.9

0-3 a 24.1 25.6 -5.8

0-3 b 24.7 26.2 -5.6

 

This table also shows that, for the specimens with two studs, the tensile force is 

fairly equally distributed between the studs as it was in the specimens with two studs and 

a 3-in. haunch.  For the specimens with three studs, slightly less than half of the force is 

resisted by the center stud.  The specimens without a haunch were cracked at the mid-

span, which was not the case for the specimens with a 3-in. haunch.  However, the center 

stud still resists the largest portion of the force because the breakout prism begins to 

develop first around the outer studs.  While the largest portion of the force is resisted by 

the center stud, the remainder of the force does not appear to be evenly distributed 

between the two outer studs as it was in the specimens with the 3-in. haunch.  In both 

specimens, one of these outer studs resists a larger portion of the force than the other 

outer stud.     

The load versus calculated stud force for the two specimens with no haunch and 

three studs is shown in Figure 4.9.  The figure shows that in both cases the center stud 

resists the most force.  The two outer studs are experiencing an unequal distribution of 

the remaining force.  The unloading part of the curves is cut off at approximately 20 kips 
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for both plots because the gage wires break as the studs pull out of the concrete.  Figure 

4.9 (a) shows that the right and left studs pick up additional load as the force in the center 

stud drops off during the breakout failure.   
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Figure 4.9: Applied load versus calculated force in the shear studs – (a) Specimen 0-
3a; (b) Specimen 0-3b 
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4.5 REINFORCING STEEL GAGE DATA 

4.5.1 Concrete Slab – Cracking, Yielding, and Ultimate Loads 

The data obtained from the strain gages on the reinforcing steel show how the slab 

is behaving during each test.  The three important stages of each test, in terms of the 

concrete slab, are the loads that correspond to cracking, yielding, and ultimate.  The loads 

corresponding to each of these points was calculated in order to see if the actual behavior 

matched the assumed behavior.     

Each slab was simply supported, and the ram pulled down on the WT section, 

loading the studs in tension and the slab in bending.  Therefore, it can be assumed that 

each specimen is a simply supported slab with a point load at mid-span.  From simple 

statics, the moment at the mid-span and the quarter-span is equal to PL/4 and PL/8, 

respectively, where P is the applied tensile force and L is the span length of the slab.  

Using this relationship between applied load and moment, the expected cracking load, 

yield load, and ultimate load can be determined.         

The calculation of the cracking moment, yield moment, and ultimate moment was 

based on a concrete strength of 6 ksi, steel reinforcement yield strength of 60 ksi, and a 

slab thickness of 8 in.  This concrete strength was used because it corresponds to the 

strength of the concrete cylinders halfway through the testing period (See Section 4.7).  A 

tension test on a reinforcement bar also confirmed that 60 ksi was an acceptable value to 

use for the yield strength of the reinforcement.  The extra depth in the haunch region was 

not included in these calculations, and the calculations also assumed that the applied 

force was uniformly distributed throughout the width of the slab.  See Appendix D for 

actual calculations of each value.     
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The tensile strength of the concrete in flexure was assumed to be 7.5 times the 

square root of the compressive strength of the concrete (ACI 318-05).  The cracking 

moment can then be found using the following equation: 

c
If

c
I

M ccr
cr

'5.7
==

σ
        Equation 4.1 

where:   Mcr = cracking moment (lb-in.) 

  σcr = tensile strength of concrete (= 581 psi) 

  I = gross moment of inertia of the slab (= 1024 in.4) 

  c = distance from centroidal axis to extreme fibers in tension 

(= 4 in.) 

  fc’ = concrete compressive strength (= 6,000 psi) 

Once the cracking moment is determined, the corresponding cracking load can be 

calculated.  The cracking load was calculated to be approximately 7.6 kips for the 

specimens with no haunch.  For the specimens with a 3-in. haunch, it was assumed that 

the slab would crack first at the edges of the haunch where the slab thickness returns to 8 

in.  These points are about 6 in. away from the mid-span; therefore, it takes a slightly 

higher applied force to generate the cracking moment.  The cracking load for the 

specimens with the 3-in. haunch was calculated to be approximately 9 kips.       

The next point that was calculated was the moment to cause yielding in the 

bottom reinforcement bars.  Before cracking, the neutral axis is located at the mid-height 

of the slab, but, after cracking, the neutral axis shifts up.  Figure 4.10 shows the assumed 

position of the neutral axis at the time of yielding.  The term kd refers to the depth of the 

neutral axis.  Above this point, the concrete is under compression, and below this point, 

the steel is assumed to resist all of the tension.  Prior to cracking, the top layer of 

reinforcement was under compression, but after cracking the top layer begins to see 

tensile forces.   
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Figure 4.10: Assumed location of neutral axis at yield of bottom reinforcement 

By setting the first moment of area of the concrete compression block and the first 

moment of area of the steel reinforcement equal to each other, the depth of the neutral 

axis can be determined.  The equation below is the result of this technique:  

( ) ( ) ( )kddnAkddnAkdkdb tstbsb −+−=⎟
⎠
⎞

⎜
⎝
⎛

2
    Equation 4.2 

where:   kd  = depth of compressive block (in.) 

  b  = width of slab (= 24 in.) 

  n = ratio of steel modulus to concrete modulus (= 6.6) 

  Asb = area of bottom reinforcement steel (= 1.23 in.2) 

  db = depth to center of bottom reinforcement steel (= 6.44 in.) 

  Ast  = area of top reinforcement steel (= 1.23 in.2) 

  dt = depth to center of top reinforcement steel (= 2.31 in.) 

Once the depth of the neutral axis is known, the strain in the top layer of steel and 

the top concrete strain can be calculated using similar triangles.  The strain in the bottom 

layer of steel is set to the yield strain, which is approximately 0.00207 in./in. for 60 ksi 
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steel.  Using the strain profile, the stress profile can be determined.  The concrete stress is 

assumed to be linear, which will be an acceptable assumption as long as fc < 0.7fc’.  

Figure 4.11 shows the assumed strain profile and stress profile at the point of first 

yielding.  At this point, the compressive force and the tensile forces can be calculated, 

and the yield moment can be determined by taking the summation of moments about the 

centroid.  The yield moment of these specimens was calculated to be approximately 37 

kip-ft, which corresponds to an applied force of 23 kips.           

εsb = εy

εst

εc 

kd

Tsb = Asbf y

kd/3

Tst = AstEsεst

f c = Ecεc

Cc = 0.5b(kd)f c

STRAIN STRESS  

Figure 4.11: Strain and stress profiles at point of yield 

Finally, the ultimate moment of the slab was calculated.  At ultimate, the strain in 

the bottom reinforcement is greater than the yield strain and the top concrete strain is 

assumed to be 0.003 in./in (ACI 318-05).  The concrete stress is assumed to be a 

rectangular stress block with magnitude of 0.85fc’ and depth of β1c (ACI 318-05).  Figure 

4.12 shows the assumed strain profile and stress profile at the point of ultimate moment.  

The compressive force is set equal to the sum of the tensile forces, and iterations are 

performed to solve for the neutral axis depth.  Once this depth is calculated, the forces 

can be calculated, and then the ultimate moment is found by taking the summation of 
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moments about the centroid.  The ultimate moment was found to be approximately 45 

kip-ft, which corresponds to an applied force of 28 kips.  As mentioned in Section 4.1, all 

of the specimens experienced a tension failure by concrete breakout prior to reaching the 

ultimate moment capacity of the deck slab.  The largest load that any of the specimens 

resisted was approximately 26 kips, which is above the yield load but below the predicted 

ultimate load.  It is also important to note that the ultimate moment capacity may actually 

be greater than 45 kip-ft.  The calculations of the ultimate moment assume that concrete 

crushing will occur at a strain of 0.003 in./in.; however, tests have shown that the 

crushing strain can be higher than 0.003 in./in. (ACI 318-05).  Therefore, the predicted 

ultimate load is expected to be a conservative prediction.                 

εsb > εy

εst

εc = 0.003 
c

Tsb = Asbf y

Tst = AstEsεst

0.85f 'c 

Cc = 0.85f 'cbβ1c

STRAIN STRESS

β 1c

 

Figure 4.12: Strain and stress profile at ultimate 

4.5.2 Specimens with a Haunch 

The gages on the slab reinforcement indicated that no yielding took place during 

any of the tests of the specimens with a 3-in. haunch.  The predicted yield load for the 

slab was 23 kips, and only one of the specimens with a haunch reached that point.  

Therefore, it is expected that the reinforcement remained elastic.  However, the strain in 

the bottom bars at the mid-span location appears to be lower than expected.  The strain 
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gage data showed that the strain in the bottom bars was about the same at the mid-span 

and the quarter-span locations in all of the specimens with a haunch as seen in Figure 

4.13.  This result is not expected because the moment at the quarter-span is only half of 

the moment at the mid-span.  It seems, however, that the increased depth in the haunch 

region has provided some help and has slightly reduced the strains in the bottom bars at 

the mid-span.   

The strains in the top reinforcing bars are also essentially equal at both locations 

as shown in Figure 4.13.  In each location the strains are very close to zero at the time of 

failure.  At the mid-span location, the top bars are experiencing tensile strains very close 

to zero at the time of failure.  However, at the quarter-span location, the top bars are still 

under compressive strains at the time of failure, which are also very close to zero.  Figure 

4.13 shows the load versus strain plots at both the mid-span and quarter-span locations of 

Specimen 3-2b.  These plots are fairly typical of all the specimens with a 3-in. haunch.  

Recall (from Figure 3.10) that the gages numbered 1-4 are located at the quarter-span, 

and the gages numbered 5-8 are located at the mid-span.  The suffixes “T” and “B” refer 

to the top and bottom bars, respectively.                 
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Figure 4.13: Specimen 3-2b – Reinforcing steel load versus strain at the (a) mid-span 
location (b) quarter-span location 
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Initially the slope of the load versus strain curves is very steep, but around 8 kips 

the slope decreases drastically.  This point represents the cracking load, which is very 

close to the predicted cracking load of 9 kips for the specimens with a haunch.  After 

cracking, the section becomes much less stiff, and the strain increases at a faster rate.  

These plots also show that the top bars start off in compression (represented by a negative 

strain), but after cracking they go into tension as the neutral axis shifts upwards. 

4.5.3 Specimens with No Haunch 

For the specimens with no haunch, the gages on the reinforcement indicated that 

yielding of the bottom bars at the mid-span occurred in all specimens.  The predicted 

yield load for these specimens was about 23 kips, but, based upon the strain gage 

readings, all of the bottom reinforcement reached the yield strain even though only four 

of the six specimens resisted a load greater than 23 kips.  However, the strain in these 

bars was typically just barely above the yield strain at the time of the breakout failure.  

The strains were not large enough in any of these specimens to produce noticeable plastic 

deformation of the slab.  Figure 4.14 shows a typical load versus strain plot for a 

specimen with no haunch in which all of the bottom bars have reached the theoretical 

yield strain of 0.00207 in./in. 



 64

0

5

10

15

20

25

-0.0005 0 0.0005 0.001 0.0015 0.002 0.0025 0.003
Strain (in./in.)

A
pp

lie
d 

L
oa

d 
(k

ip
)

5-T 5-B
6-T 6-B
7-T 7-B
8-T 8-Bεy

 

Figure 4.14: Specimen 0-2a – Mid-span reinforcing steel load versus strain  

Although the bottom bars have all reached the yield strain, the load continues to 

increase after this point.  This happens because of the presence of the top layer of 

reinforcement in the slab.  The bottom bars have yielded, but the top bars have not, so the 

slab can continue to resist additional load.  The plot also shows that the cracking load is 

between 5 and 6 kips, which is slightly less than the predicted cracking load of 7.6 kips. 

In a couple of the specimens with no haunch, a significant amount of yielding 

occurred in one or two of the bottom bars at the mid-span.  Figure 4.15 shows one of 

these specimens.  The two bars that have yielded significantly are 5-B and 8-B, which 

correspond to the outer bars.  As the breakout prism forms in the center of the slab, and 

the bond between the middle bars and the concrete is lost, it seems that the strain is 

redistributed to the outer bars that are not affected by the breakout prism.       
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Figure 4.15: Specimen 0-3a – Mid-span reinforcing steel load versus strain 

The gages at the quarter-span typically recorded strains that were roughly half of 

the strains at the mid-span.  This is what was expected because the moment at the 

quarter-span is half of the mid-span moment.  In several of the specimens, the gages on 

the bottom bars recorded large strains at the quarter-span during the pullout of the studs 

as shown in Figure 4.16.  Some of the bars actually reach the yield strain at the quarter-

span during the breakout failure.  This increase in strain and yielding is due to the effect 

of the concrete breakout failure rather than the effect of bending stresses.       
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Figure 4.16: Specimen 0-3a – Quarter-span reinforcing steel load versus strain 

4.6 SLAB DEFLECTION 

The slab deflection data confirm that very little plastic deformation of the deck 

slab occurred during any of the tests.  The deck slab cracked for all specimens and 

reached the yield load for some specimens, but the concrete breakout failure typically 

occurred before the reinforcement reached strains that were much larger than the yield 

strain.  Figure 4.17 shows a typical plot of the applied load versus the top of slab mid-

span deflection.  This figure shows that, after the breakout failure, the deck slab was left 

with approximately 0.08 in. of permanent deflection.  A mid-span deflection of 0.08 in. 

corresponds to a deflection equal to L/975 for these test specimens, which is a very small 

deflection.  This plot represents a specimen with a 3-in. haunch, but it is indicative of the 

behavior of all the specimens both with the haunch and without the haunch.        
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Figure 4.17: Specimen 3-3a – Typical load versus top of slab deflection plot 

Figure 4.17 shows that the specimen is initially very stiff, but then it becomes 

much less stiff at about 5 or 6 kips.  This point represents the cracking load, which was 

predicted in Section 4.5.1 to be approximately 8-9 kips.  Prior to cracking, the section 

behaves with gross section properties, making the moment of inertia much greater and the 

slab much stiffer than a cracked slab.  After the section cracks, the cracked section 

properties dictate the behavior and so the specimen is less stiff. 

Another interesting point shown in this plot is the V-notch seen at about 10 kips.  

This is a point at which the loading was paused to map cracks and inspect the specimen.  

The deflection is held constant by the ram, and the load drops off slightly.  The loading 

rate during a test is considered to be an intermediate loading rate, which is between a 

static and dynamic loading rate.  The V-notch point represents a static value on the load 

versus deflection plot.  These V-notches can also be seen in previous sections on the 
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applied load versus calculated stud force plots and the load versus strain plots for the 

deck slab reinforcing steel.        

4.7 CONCRETE CYLINDER TESTS 

As mentioned in Chapter 3, concrete cylinders were cast to verify the strength of 

the concrete at various points throughout the testing period.  The cylinders were cast in 6-

in. diameter by 12-in. molds.  Compression tests were performed on the day testing 

began, after all of the A-specimens were tested (half-way), and the day that all testing 

was completed.  These test dates corresponded to 38, 49, and 59 days after casting, 

respectively.  The results of the cylinder compression tests are shown in Table 4.5. 

Table 4.5: Concrete cylinder compression tests 

38 5,600 80
49 6,010 170
59 6,130 80

Standard 
Deviation (psi)

Average Compressive 
Strength (psi)

Days after 
Casting

 

This table shows that the compressive strength of the concrete is significantly 

higher than the Class “S” concrete required minimum value of 4,000 psi.  The 

compressive strength is also higher than the strength seen in the FSEL test bridge, which 

was approximately 4,900 psi after 28 days and 5,400 psi after 70 days.  The concrete in 

the FSEL test bridge is also Class “S” concrete, but it was supplied by a different ready-

mix concrete supplier.             
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CHAPTER 5 

Analysis and Discussion of Test Results 

5.1 PREDICTED CAPACITIES VERSUS TEST RESULTS 

Using the equations found in Appendix D of the ACI 318 code, a predicted tensile 

capacity for each of the six unique specimens was calculated.  In calculating the predicted 

values, the governing failure mode for all specimens was concrete breakout.  The 

predicted values are based on a concrete compressive strength of 6,000 psi.  This concrete 

strength was chosen because it corresponds to the strength of the concrete cylinders at the 

midway point of the testing program.  Strength reduction factors (φ) were not applied to 

the predicted values.  The detailed calculations of the predicted capacity of each 

specimen are given in Appendix E.   

As described in detail in Chapter 2, the equations used to calculate the concrete 

breakout strength are as follows: 

5.1'
efccb hfkN =      Equation 5.1 (ACI 318-05) 

bNcNedNec
Nco

Nc
cbg N

A
A

N ,,, ψψψ=    Equation 5.2 (ACI 318-05) 

where: Nb  = concrete breakout strength of a single anchor in cracked 

concrete with no edge or group effects (lb) 

  kc = 24 for cast-in anchors 

  fc’  = specified compressive strength of concrete (psi) 

  hef = effective anchor embedment depth (in.) 

  Ncbg = concrete breakout strength of an anchor or group of 

anchors (lb) 
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  ANc = projected concrete failure area of an anchor or group of 

anchors (in.2) 

  ANco = projected concrete failure area of one anchor when not 

limited by edge distance or spacing (= 9hef
2) (in.2) 

  ψec,N = modification factor for eccentric loading  

  ψed,N = modification factor to account for edge distances less 

than 1.5hef 

  ψc,N = modification factor to account for cracking 

The eccentric loading modification factor, ψec,N, was taken as 1.0 because there 

was no eccentric loading of the studs.  The modification factor for cracking, ψc,N, was 

taken as 1.0 because it was assumed that flexural cracking would take place prior to the 

breakout failure.  This factor can be taken as 1.25 if no cracking occurs at service load 

levels.  The modification factor for edge effects, ψed,N, was taken as 1.0 for the specimens 

with no haunch, and less than 1.0 for the specimens with a 3-in. haunch.  This factor is 

dependent on the distance to the edge as shown in Equation 5.3.  It was assumed that the 

haunch represented an edge, and the edge effect factor was 0.96, 0.87, and 0.79 for the 

specimens with one, two, and three studs, respectively.  The specimens with three studs 

have the largest reduction in capacity because the distance to the haunch is the smallest in 

these specimens.   

ef

a
Ned h

c
5.1

3.07.0 min,
, +=ψ  if ca,min < 1.5hef       Equation 5.3 (ACI 318-05) 

where:   ca,min = smallest edge distance measured from the center of the 

stud shaft to the edge of concrete (in.)   

The projected concrete failure area for the specimens with a 3-in. haunch was 

assumed to be the width of the top flange by three times the effective height of the stud.  
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The width of the flange was used in the deck transverse direction because the haunch 

creates an edge at both sides of the flange.  The full breakout prism width of 3hef was 

used in the deck longitudinal direction because there is no edge.  The shaded areas in 

Figure 5.1 represent the assumed projected concrete failure areas for the specimens with a 

3-in. haunch.  Notice that, due to the effect of the haunch edges, the projected concrete 

failure area for each specimen is the same regardless of the number of studs.      

3hef

s sc c

3hef

s cc

3hef

cc

Width of Flange Width of Flange Width of Flange

a,min a,min a,min a,min a,min a,min

 

       (a)         (b)        (c)  

Figure 5.1: Assumed projected concrete failure area of studs for specimens with a 3-in. 
haunch and (a) one stud, (b) two studs, and (c) three studs 

The projected failure area for the specimens with no haunch is not reduced by any 

edges.  Therefore, the failure width in the transverse direction can be greater than the 

width of the flange.  The projected concrete failure area was assumed to be 3hef in the 

deck longitudinal direction and 3hef plus the spacing between the outer studs in the deck 

transverse direction as shown by the shaded areas in Figure 5.2.  Notice that, for the 

specimens without a haunch, the projected failure area increases as the number of studs is 

increased.   
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Figure 5.2: Assumed projected concrete failure area of studs for specimens with no 
haunch and (a) one stud, (b) two studs, and (c) three studs 

The values of the important variables and the resulting predicted capacities are 

listed in Table 5.1.  For the three specimens without a haunch, the difference in the 

predicted capacities comes from the difference in the ANc/ANco ratio.  Adding studs 

increases this ratio, and thus increases the capacity.  For the three specimens with a 3-in. 

haunch, the ANc/ANco ratio stays constant due to the effect of the haunch.  The difference 

in the predicted capacities comes from the modification factor for edge effects, ψed,N.  As 

more studs are grouped across the flange width, the edge distance decreases.  This 

decreases the modification factor for edge effects, and therefore the capacity decreases as 

the number of studs increases.       

Table 5.1: Calculation of predicted capacities (fc’ = 6,000 psi) 

1 stud 4.625  -  - 192.5 192.5 1.0 1.0 1.0 18.5 18.5
2 studs 4.625  - 4.0 248.0 192.5 1.0 1.0 1.0 18.5 23.8
3 studs 4.625  - 4.0 303.5 192.5 1.0 1.0 1.0 18.5 29.2
1 stud 4.625 6.0  - 166.5 192.5 1.0 0.96 1.0 18.5 15.3
2 studs 4.625 4.0 4.0 166.5 192.5 1.0 0.87 1.0 18.5 14.0
3 studs 4.625 2.0 4.0 166.5 192.5 1.0 0.79 1.0 18.5 12.6

ca,min 

(in.)
hef 

(in.)
ψec,N

ANco 

(in.2)
ANc 

(in.2)
s 

(in.)
Ncbg 

(kip)
Nb 

(kip)
ψc,Nψed,N

No 
Haunch

3" 
Haunch

Specimen
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The calculated values using the ACI equations are compared to the experimental 

test results as shown in Table 5.2.        

Table 5.2: Experimental results versus nominal capacity from ACI design equations  

1 stud 18.5 20.9 12.7
2 studs 23.8 24.6 3.2
3 studs 29.2 25.9 -11.3
1 stud 15.3 22.3 45.8
2 studs 14.0 19.2 37.1
3 studs 12.6 17.3 37.3

3" 
Haunch

Specimen % 
Difference

ACI 318-05 
(kip)

Experimental 
Average (kip)

No 
Haunch

 

The table shows that the ACI equations worked well for the specimens with no 

haunch.  This is expected because the concrete breakout failures seen in the experimental 

tests were consistent with the assumed breakout failures.  For the specimens with one and 

two studs, the equations are slightly conservative.  For the specimen with three studs the 

equation is unconservative.  However, if the strength reduction factor had been applied, 

the design capacity would be conservative.  In the case of the specimens with no haunch, 

the strength reduction factor would be equal to 0.75 because steel reinforcement 

intersects the failure surfaces.      

The ACI equations prove to be very conservative for the specimens with a 3-in. 

haunch.  As mentioned in Chapter 2, cracking in the region of the stud connection can 

reduce the concrete breakout strength by as much as 25%.  The predicted values for the 

specimens with a haunch assumed that cracking would occur (ψc,N = 1.0).  However, 

while the slab cracked at the haunch edges, there were no flexural cracks in the haunch 

region as shown in Figure 5.3.   
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Figure 5.3: Specimen with 3-in. haunch – no flexural cracking in haunch 

If the modification factor for cracking, ψc,N, had been taken as 1.25 rather than 1.0 

for the specimens with a 3-in. haunch, then the predicted values would be much closer to 

the experimental values.  The adjusted predicted values assuming no cracking in the 

specimens with a 3-in. haunch and the adjusted percent difference for each specimen are 

shown in Table 5.3.  This table shows that the ACI equations are still slightly 

conservative but that the accuracy is much greater when the equations are adjusted to 

account for the fact that there is no cracking in the haunch.       

Table 5.3: Percent difference assuming no cracking in specimens with a 3-in. haunch 

1 stud 19.1 22.3 16.6
2 studs 17.5 19.2 9.7
3 studs 15.8 17.3 9.8

% 
Difference

3" 
Haunch

Specimen Predicted - No 
cracking (kip)

Experimental 
Average (kip)

 

Another potential reason for the difference between the predicted and 

experimental results for the specimens with a 3-in. haunch is that the actual observed 

breakout failures were considerably different than the assumed breakout failure 

conditions.  It was assumed that the haunch was an edge as shown in Figure 5.4 (a), but 

No cracking in 
haunch region 
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in reality the haunch edge is only 3 in.  Above the haunch there is additional concrete 

beyond the assumed edge distance as shown in Figure 5.4 (b).                

    

            (a)                 (b)  

Figure 5.4: Deck transverse direction – (a) assumed breakout failure; (b) actual 
breakout failure 

In the deck longitudinal direction, the breakout prism was assumed to have no 

edge effect and to extend 1.5hef in both directions as shown in Figure 5.5 (a).  However, 

the failure plane ran along the whole length of the haunch as shown in Figure 5.5 (b).  

The result was that the entire rectangular block of concrete that was the haunch was 

separated from the deck slab.   

   

                        (a)             (b) 

Figure 5.5: Deck longitudinal direction – (a) assumed breakout failure; (b) actual 
breakout failure 
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The assumed projected concrete failure area versus the actual concrete failure area 

is shown in Figure 5.6.  The result of the differences between the assumed and actual 

concrete breakout failures was that the area of the failure plane was much larger.  A 

larger failure plane would increase the breakout load.  This may explain why the 

predicted capacities are still conservative even after modifying the equations to account 

for no cracking in the haunch region.        

3hef

(a)

(b)

bf

w

w

 

Figure 5.6: (a) Assumed projected failure area; (b) actual failure area 

A designer may also consider simply multiplying the tensile capacity of concrete 

by the area of the failure plane as a way to quickly estimate an upper bounded capacity.  

In the case of the specimens with a haunch, the failure plane is simply the width of the 

flange multiplied by the width of the specimen (bf x w).  However, this approach should 

not be used as it produces extremely unconservative results.  The predicted capacity 

obtained using this methodology over-estimates the capacity by a factor of approximately 

10.  This method also does not take into account the reduction in strength associated with 

the edge effects.     
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5.2 EVALUATION OF CURRENT SHEAR CONNECTOR DETAIL 

5.2.1 Introduction 

The purpose of this experimental program was to determine the effect that a 

bridge haunch has on the tensile capacity of a row of shear studs and to use that 

information to determine if the current detail will allow for the transfer and redistribution 

of the required tensile force during a fracture event.  Much has been learned about both 

the strength and behavior of the shear studs in specimens with and without a haunch.  The 

results of this testing program not only demonstrate the effect of the haunch, but they also 

can be used to examine the effectiveness of the current standard shear stud bridge detail.     

5.2.2 Capacity 

The test results clearly show that the bridge haunch reduces the tensile capacity of 

the shear studs.  The tensile capacity of a row of three studs without a haunch is reduced 

by 33% when a 3-in. haunch is in place, and the tensile capacity of a row of two studs 

without a haunch is reduced by 22% when a 3-in. haunch is in place.   

5.2.3 Ductility 

More significant than the decrease in capacity, the tests have also demonstrated 

that the specimens with a 3-in. haunch exhibit no ductility at failure.  This lack of 

ductility is due to the fact that the haunch is not reinforced and that the studs do not 

penetrate far enough into the deck to engage the steel reinforcement.  The breakout 

failure is a tension failure of the concrete, and therefore is a brittle failure.  This is a 

major problem because it may make the distribution of the tensile force along the length 

of the girder impossible during a fracture event.  In order to redistribute forces, a system 

must have ductility, and this current detail offers no ductility.  Figure 5.7 shows the total 

separation of the studs and the haunch concrete from the deck.  Notice in Figure 5.7 (b) 
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that the reinforcement steel is even with, but not intersecting, the failure plane and thus 

cannot provide any ductility when the breakout failure occurs.       

   
   (a)      (b) 

Figure 5.7: Complete haunch separation as seen from (a) the side view and (b) 
underneath the specimen 

For the specimens with a haunch, once the breakout capacity was reached, the 

horizontal cracking that separated the haunch from the deck slab formed very suddenly 

and propagated along the entire width of the specimen.  In a wider specimen with only 

one row of studs in the center of the width, it is likely that the entire haunch would 

separate from the slab at approximately the same load.  This is due to the fact that, once 

the breakout capacity is reached, the horizontal cracking that separates the haunch 

concrete from the deck slab is unstable and propagates along the entire width 

(longitudinal direction) of the specimen.  In the case of the FSEL test bridge, where the 

longitudinal length is much greater (118 ft) and the studs are spaced at approximately 2 

ft, it is difficult to predict how the additional rows of studs will influence this failure 

behavior.  The other rows should prevent the haunch from completely separating from the 

deck slab along the entire length of the girder, but if the failure plane forms even with the 

top of the studs, it is possible that the other rows may not give much help.        
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The specimens without a haunch exhibited some ductility at failure only because 

the breakout failure prism was intersected by the two middle transverse deck 

reinforcement bars as shown in Figure 5.8.  The longitudinal deck reinforcement bars are 

spaced too far away to intersect the breakout prism even in the specimens with no haunch 

and three studs.   

  
        (a)             (b) 

Figure 5.8: (a) Drawing and (b) photograph showing the center transverse bars 
running through the concrete failure prism for a specimen with no haunch   

Although the specimens with no haunch exhibited some ductility as the studs 

pulled out of the slab, the failure is still governed by the tensile strength of the concrete 

and is quite brittle.  At failure, the load is not held constant during a long period of 

deformation, but rather the load slowly decreases as the deformation increases until the 

studs completely breakout and the load goes to zero.     

5.2.4 Efficiency 

Analysis of the test results show that the shear connector detail used in the FSEL 

test bridge is a very inefficient use of materials.  Using three studs in a row across the top 

flange yields a capacity less than the capacity of a single stud when there is a haunch.  
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Even if there were no haunch, three studs spaced very close together across the top flange 

only increases the capacity by approximately 25% when compared to a single stud. 

The data from the strain gage data also show that the center stud resists the 

majority of the tensile force and that each of the outer studs resists only about 25% of the 

total load.  Furthermore, in the case with a 3-in. haunch and a row of three studs, at 

failure the largest stress in the center stud was approximately 25% of the yield stress, and 

the largest stress in the outer studs was approximately 14% of the yield stress.  In the 

specimens with only one stud and a 3-in. haunch, the single stud experienced a stress 

approximately 72% of the yield stress at failure.  These results show that grouping the 

studs is not an efficient use of materials. 

If the studs must be grouped into rows, using two studs in a row is more efficient 

than using three studs in a row.  When two studs are used in a specimen with a haunch, 

the reduction in capacity is not as great as when three studs are used.  In addition the 

force is evenly distributed between the two studs, and the stress in the studs is higher at 

the time of the concrete breakout failure.            

5.2.5 Summary 

The current detail of using a bridge haunch and grouping the studs in rows of two 

or three does not perform well under tensile loading.  The haunch greatly reduces the 

capacity when multiple studs are used in a row and also prevents the connection from 

failing in a ductile manner.  Following the current AASHTO and TxDOT standards, 

which require the studs to penetrate a minimum of 2 in. into the deck slab, does not allow 

the breakout failure prism to engage the deck reinforcement.  This creates an extremely 

brittle failure and may prevent the redistribution of the tensile forces along the length of 

the girder during a fracture event.   
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5.3 POSSIBLE TECHNIQUES TO IMPROVE SHEAR CONNECTOR DETAIL 

5.3.1 General Comments 

The suggestions in the following sections are possible methods that can be used to 

improve the tensile behavior of the current shear stud detail.  These suggestions are based 

on the assumption that the haunch is a necessary part of bridge construction, which 

cannot be eliminated despite the negative effects it has on the tensile behavior of the 

studs. 

The AASHTO Specifications require that a designer calculate the shear capacity 

of a single stud and provide enough studs to resist the required design shear force.  

Therefore, as long as the following suggestions do not reduce the number of studs on a 

girder or reduce the shear capacity of a single stud then the shear resistance should not 

change.   

5.3.2 Haunch Reinforcement 

A simple way to improve the current detail without changing the spacing or 

grouping of the studs is simply to include reinforcement in the haunch area near each row 

of studs.  Figure 5.9 demonstrates a potential detail for reinforcing the haunch region.  

The bar shown in green would be placed on each side of a row of studs.  The bar would 

need to be spaced close enough to the studs so that it would intersect the breakout failure 

plane.  The central transverse deck reinforcement bars, which intersected the failure 

prism in the specimens with no haunch, were offset from the row of studs by 3 in.  

Therefore, this would be an acceptable spacing to offset the proposed haunch 

reinforcement bars.  The bar would also need to be long enough to develop both ends in 

the deck slab.  The longitudinal deck reinforcing bars are not shown in this figure.             
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(a) 

 

(b) 

Figure 5.9: Haunch reinforcement to improve ductility (a) cross-section (b) plan view 

Adding haunch reinforcement would probably not increase the capacity of the 

row of studs, but it would add ductility.  Rather than reaching a maximum load and 

failing very suddenly, the behavior at failure would be similar to the behavior of the 

specimens with no haunch.  The load would slowly drop off while the studs pull out of 

the slab.  Figure 5.10 (a) shows the load versus pullout deflection of the current detail, 

and Figure 5.10 (b) shows the load versus pullout deflection curve that can be expected if 

haunch reinforcement is used around the studs.  These plots are generated from the test 

data for specimens with and without a haunch, respectively.  The ductility that the haunch 

reinforcement can add to the current detail may make the redistribution of the tension 

forces possible during a fracture event. 
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   (a)      (b) 

Figure 5.10: Load versus stud pullout for (a) current detail and (b) reinforced haunch 
detail 

5.3.3 Longitudinal Spacing of Studs 

The test results have shown that the current detail is an inefficient use of the shear 

studs.  When using a haunch, a single stud reaches a much higher capacity than a group 

of two or three studs.  Even without a haunch, using two or three studs provide less than a 

25% increase in capacity.  Therefore, in order to maximize the tensile force that can be 

resisted, it would be better to use a single stud and to space the studs longitudinally along 

the length of the girder as shown in Figure 5.11.  Based on the test results for the 

specimens with a haunch, three single studs behaving independently will resist almost 

four times as much tensile force than three studs grouped across the flange width.    
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Longitudinal Direction

Shear StudTop Flange Width

 

Figure 5.11: Longitudinal spacing of shear studs 

Based on the breakout prism assumed by the ACI equations, the longitudinal 

spacing needs to be at least three times the effective height of the stud for the studs to 

behave independently.  For a 5-in. long stud, this spacing corresponds to approximately 

14 in.  In the case of the 120-ft span FSEL test bridge, the studs are grouped in rows of 

three spaced at approximately 22 in.  This corresponds to roughly 200 studs on one top 

flange of the box girder.  If a single stud was to be spaced longitudinally at 14 in., the 

number of studs on one flange of a box girder from the FSEL test bridge would be just 

over 100.  This is unacceptable because the shear resistance would become inadequate.  

In order to maintain the same number of studs on the FSEL test bridge, the single studs 

would need to be spaced longitudinally at 7 in.  

Therefore, the studs will not be acting completely independently of each other if 

they are spaced longitudinally at this spacing.  Theoretically, the group effect would 

include every stud along the length of the girder.  However, unless there was a uniform 

tensile load applied to the entire girder, then the group effect would not include all of the 
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studs.  During a fracture event the tensile force will initially be applied in the local area 

where the crack occurs.  Therefore, the group effect will most likely only include the 

studs in the vicinity of the fracture.   

Even with this group effect, the tensile capacity of three studs spaced 

longitudinally will still be much greater than the row of three studs spaced transversely 

across the flange width.  Three studs grouped transversely across the width of the top 

flange experience a very large reduction in capacity because the distance between the 

outer studs and the haunch edge is very small.  While the single studs spaced 

longitudinally may experience a group effect, the edge effect is kept to a minimum 

because the stud is in the center of the flange width.                 

5.3.4 Longer Studs 

Another method to improve the current detail is to increase the length of the shear 

studs.  An increase in the stud length could potentially increase both the tensile capacity 

and the ductility of a row of studs.  As shown in Equations 5.1 and 5.2, the concrete 

breakout load is a function of the effective height raised to the three-halves power.  Thus, 

for a single stud with no edge or group effects, increasing the length of the stud will 

increase the capacity.  Using the ACI equations, for a single 7/8-in. diameter stud with no 

edge or group effects in Class “S” (4,000 psi) concrete, an increase in the length of the 

stud from 5 in. to 7 in. will increase the concrete breakout capacity from 15 kips to 26 

kips.         

Increasing the stud length will increase the penetration of the studs into the deck 

reinforcement mat.  Using an 8-in. long stud with a 3-in. haunch would create the same 

penetration into the deck reinforcement as the test specimens with 5-in. long studs and no 

haunch as shown in Figure 5.12.  If the studs extend far enough into the reinforcement 

mat, then the breakout failure prism will intersect the deck reinforcement steel.  This 
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would then produce a ductile failure similar to the failures exhibited by the test specimens 

with no haunch.         

 
          (a)               (b) 

Figure 5.12: (a) 5-in. long studs with no haunch; (b) 8-in. long studs with 3-in. haunch 

If the studs penetrate far enough above the top of the haunch, it is also possible 

that the haunch will not have as great of an effect on the tensile capacity.  The concrete 

breakout failure prism could develop as shown in Figure 5.13.  If the failure prism 

developed in this manner, the behavior and capacity would be similar to that of the 

specimens with 5-in. long studs and no haunch.  This would nullify the negative effect of 

the bridge haunch and increase both the capacity and ductility.      

 

Figure 5.13: Potential concrete breakout failure prism for longer studs 
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Even if the failure plane forms directly at the intersection of the haunch edge and 

bottom of the deck slab, the failure plane will still be intersected by the transverse 

reinforcement steel.  Thus, while the increase in capacity may not be very large, the 

ductility during the breakout failure would still be present.  Therefore, using longer studs 

will improve the ductility and may also create a significant increase in capacity. 

AASHTO and TxDOT specifications require that the clear cover between the top 

of a stud and the top of the concrete deck be at least 2 in.  Therefore, in bridges with a 

variable haunch height the use of longer studs may require varying the stud length along 

the girder to match the changes in the haunch height.     

5.3.5 Combination of Longer Studs and Longitudinal Spacing  

Spacing single studs longitudinally along the length of the girder will increase the 

capacity, but if the stud only penetrates 2 in. above the haunch, then the failure will still 

be brittle.  However, if longer studs are used in combination with the longitudinal spacing 

of single studs, then the capacity and the ductility can be improved.  Longer studs will 

force the failure plane to intersect the reinforcement steel, which will create ductility.  

Spacing single, longer studs longitudinally will also increase the number of transverse 

bars that intersect the failure prism during a fracture event.  This will further increase the 

ductility and the ability of the studs to redistribute force along the length of the girder.     

When using a single stud in a row, it is possible that the governing failure mode 

could switch from concrete breakout to stud pullout.  Figure 5.14 shows a plot of the 

tensile capacity versus the effective height for a single 7/8-in. diameter stud with no edge 

or group effects embedded in 4,000 psi cracked concrete.  This plot is generated using the 

ACI equations for stud pullout failure and concrete breakout failure.  The stud pullout 

capacity is constant because the equation for stud pullout is based only on the concrete 

strength and the bearing area under the stud head, which is constant for all length 7/8-in. 
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studs.  The concrete breakout strength increases rapidly as the effective height increases 

because the equation includes a hef
1.5 term.      
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Figure 5.14: Tensile capacity versus effective height for a single 7/8-in. diameter stud 
embedded in 4,000 psi concrete 

This figure shows that the balanced point or cross-over point occurs when the 

effective height is approximately 7 in.  For studs with an effective height less than 7 in., 

concrete breakout is the governing failure.  For studs with an effective height greater than 

7 in., which would correspond to 8-in. long studs and above, the failure is governed by 

stud pullout.  Therefore, if longer studs are used and spaced longitudinally along the 

girder, it is possible that the failure mode could switch to stud pullout.  If this were to 

happen, the capacity would be greater, but the ductility would not increase.  In a stud 

pullout failure, the stud pulls out with only the concrete directly under the stud head.  

Therefore, the failure will not engage the reinforcing steel even though the stud 

penetrates into the reinforcement mat.     
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This figure also shows that stud yielding cannot govern for a 7/8-in. stud 

embedded in 4,000 psi cracked concrete.  However, the pullout strength and the yield 

strength are very close.  If the concrete strength is increased, then yielding can occur 

before a pullout failure.  If this is the case, then as long as the effective height is greater 

than the balanced effective height, yielding of the stud will occur before a concrete 

failure.  The cross-over point for a single 7/8-in. diameter stud with no edge or group 

effects in various concrete compressive strengths is shown in Table 5.4.  This table shows 

that yielding will occur before pullout for concrete strengths greater than or equal to 

4,500 psi.  Thus, for a single 7/8-in. diameter stud with no edge or group effects, yielding 

will govern when the effective height is greater than or equal to the balanced effective 

height and the concrete strength is greater than or equal to 4,500 psi.  (All values in Table 

5.4 assume that the concrete is cracked.)          

Table 5.4: Cross-over point for a single 7/8-in. diameter stud with no edge or group 
effects in various concrete compressive strengths 

fc' (psi) hef,bal (in.) Np (kip) Nyield (kip)
4000 7.02 28.3 30.1
4500 7.30 31.8 30.1
5000 7.57 35.3 30.1
5500 7.81 38.9 30.1
6000 8.04 42.4 30.1
6500 8.26 45.9 30.1
7000 8.47 49.5 30.1  

5.3.6 Reduction of Stud Diameter 

The methods mentioned in the previous sections are all governed by the tensile 

strength of the concrete deck slab, which is inherently a brittle failure.  This failure 

becomes only slightly ductile when reinforcement bars intersect the failure surfaces.  In 

order to guarantee that the shear stud connection will be truly ductile, the failure should 
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be governed by yielding of the stud rather than a brittle failure of the concrete.  If 

yielding of the stud is the governing failure mode, there will be a yield plateau in which 

the load is held constant during plastic deformation.  This behavior is far superior to the 

ductility offered by reinforcement intersecting the breakout failure prism in which the 

load slowly decreases with increasing deformation.  Yielding of the studs would be the 

ideal situation for redistributing the tensile forces along the length of the girder during a 

fracture event.            

In order to assure that yielding of the studs is the governing failure mode, the 

concrete breakout capacity and the stud pullout capacity must be maximized.  In order to 

do this, it may be necessary to space the studs longitudinally along the girder.  If three 

studs are grouped transversely across the width of the flange, the yield load of the group 

becomes three times the yield load of a single stud.  The experimental tests have shown 

that the concrete breakout strength is significantly reduced when three studs are grouped 

in this way, and thus the breakout failure would govern over the yielding of the studs.  

Additionally, for a single 7/8-in. stud with no edge or group effects in Class “S” concrete 

(4,000 psi), either a concrete breakout failure or a stud pullout failure will occur prior to 

yielding regardless of the effective height of the stud.  Therefore, in order to reduce the 

yield load of the stud and assure that yielding occurs before a concrete failure, the 

diameter of the stud must be reduced.  Reducing the diameter of the stud, while keeping 

the diameter of the stud head the same, will also increase the stud pullout capacity. 

  However, the shear capacity of a single stud is based on the cross-sectional area 

of the stud as seen in the following equation from the AASHTO LRFD Bridge 

Specification:   

uscccscn FAEfAQ ≤= '5.0       Equation 5.4 

where:   Qn = nominal resistance of a single stud (kip) 
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  Asc = cross-sectional area of stud (in.2) 

  f’
c  = specified 28-day compressive strength of concrete (ksi) 

  Ec = modulus of elasticity of concrete (ksi) 

  Fu = specified minimum tensile strength of stud (ksi) 

Reducing the diameter of the stud would reduce the shear capacity and increase 

the total number of studs required for each girder.  A reduction of the stud diameter to 1/2 

in. reduces the cross-sectional area to approximately one-third the area of a 7/8-in. 

diameter stud.  This means that the shear capacity of a single stud would be one-third of 

the previous capacity and that the required number of studs would triple.  Clearly, this is 

not an efficient or economical solution.   

In order to hold the total number of studs constant, the diameter of the stud would 

have to remain constant for the calculation of the shear capacity.  If the transfer of the 

shear force is assumed to take place at the base of the stud, the diameter of the stud could 

remain constant at the base in order to resist the shear force.  However, the stud could 

then be tapered to a reduced diameter for the rest of the stud length in order to induce 

yielding of the stud under a tension load.  Figure 5.15 shows an example of a reduced 

diameter shear stud.  The 7/8-in. diameter at the base can be used to calculate the shear 

resistance, but the reduced 1/2-in. diameter would be used to calculate the yield load for 

the tensile loading.  The 1/2-in. reduced diameter was selected because it is the largest 

diameter that will allow yielding to occur prior to concrete breakout for a 5-in. long 

single stud in 4,000 psi concrete.  For a longer stud, the additional length could be added 

to the 7/8-in. diameter portion of the stud.  Thus, the extra length can be utilized for shear 

resistance and the length of the reduced diameter portion of the stud remains constant.               
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Figure 5.15: Reduced diameter shear stud 

The question then arises as to where the shear transfer actually occurs when there 

is a haunch.  It may not be correct to assume that the shear transfer takes place in the 

haunch region where the diameter of the stud would be kept at 7/8 in.  The shear transfer 

may occur at the bottom of the slab, rather than the bottom of the haunch as shown in 

Figure 5.16.  If this is the case, then the stud is actually in both shear and bending, and it 

may not be safe to assume that the 7/8-in. diameter can be used in the shear calculations.   

Haunch height

V

 

Figure 5.16: Stud under shear and bending 
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Forcing the tensile failure mode to be yielding of the shear stud provides the 

greatest ductility of this connection.  The logical way to induce a yielding failure is to 

reduce the diameter of the studs so that the yield load is much less than the concrete 

failure loads, but it is unclear as to how this might affect the shear capacity of the studs.  

However, the potential benefits that this detail might have in terms of behavior during a 

fracture event warrant further investigation into this solution.             

5.3.7 Summary 

The laboratory tests have shown that the current shear stud detail does not 

perform well under tensile loading.  The haunch greatly reduces the capacity of a row of 

studs grouped transversely across the flange width and prevents the connection from 

failing in a ductile manner.   

The tensile behavior of the shear studs can be improved by any one or 

combination of the above modifications to the current detail.  Adding haunch 

reinforcement will allow the connection to have some ductility.  Spacing single studs 

longitudinally should increase the capacity, but not the ductility.  Using longer studs 

should increase both ductility and capacity.  Spacing single, longer studs longitudinally 

should increase both the capacity and ductility.  However, it is possible that in single, 

longer studs the governing failure method will be stud pullout.  This would increase the 

capacity, but not ductility.  The best solution for ductility and the ability to redistribute 

load during a fracture event is to make stud yielding the governing failure.  However, it is 

difficult to do this without affecting the shear capacity.    
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CHAPTER 6 

Conclusions and Recommendations 

6.1 SUMMARY OF OBJECTIVES 

In order for a simply supported twin box girder steel bridge to be considered non-

fracture critical, the bridge system must have the ability to transfer the load that was 

resisted by the fractured girder over to the other girder.  As the fractured girder drops 

down, the shear studs will be loaded in tension.  If the studs can transfer the tensile force 

to the slab, then the slab must have the ability to transfer the force to the other girder.  

Finally, the non-fractured girder must have enough reserve capacity to support the entire 

bridge dead and live load.  An important assumption involved in this load transfer is that 

the studs and the slab behave in a ductile manner so that the load can be distributed along 

the length of the girder.   

When analyzing the tensile capacity of the shear studs, it was determined that the 

bridge haunch would likely have a detrimental effect on the tensile capacity of a row of 

studs.  In order to determine the effect of the haunch, a series of laboratory tests were 

performed on bridge deck sections with both no haunch and a 3-in. haunch.  The results 

of these tests were used to evaluate the current haunch detail and to determine if the studs 

could transfer the required tensile force during a fracture event.  The results were also 

used to develop possible techniques that can be used to improve the detail so that the 

studs might perform better during a fracture event.     

6.2 CONCLUSIONS 

The following conclusions were drawn from the results of the tests performed on 

the 12 bridge deck segments: 
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1) The haunch clearly has a detrimental effect on the tensile capacity of 

the shear studs.  Specimens with multiple studs across the flange width 

and a 3-in. haunch failed at significantly lower loads than the 

corresponding specimens with no haunch.  In specimens with a 3-in. 

haunch, adding studs to the row decreases the distance to the haunch 

edge and thus decreases the capacity.   

2) Following the minimum design provisions, which require the stud to 

penetrate 2 in. into the deck slab, will create a brittle failure when the 

studs are loaded in tension because this depth of embedment does not 

create an adequate penetration above the bottom layer of the 

reinforcement steel.  The specimens with a 3-in. haunch experienced 

no ductility at failure because the deck reinforcement steel did not 

intersect the concrete failure plane.  Conversely, the specimens 

without a haunch experienced some ductility at failure – the load 

dropped off slowly as the deformations increased – because the deck 

reinforcement intersected the failure plane.      

3) Due to the lack of ductility seen in the specimens with a 3-in. haunch, 

it may not be possible for the studs to distribute the required tensile 

force along the length of the girder during a fracture event.  If this 

cannot happen, the studs will not be able to transfer the load into the 

slab and to the non-fractured girder.  

4) Grouping studs transversely across the top flange width is an 

inefficient way to distribute the studs along the girder.  In specimens 

with a 3-in. haunch, this arrangement creates a tensile capacity that is 

lower than the capacity of a single stud.  Even in specimens with no 
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haunch, the capacity of three studs in a row is only slightly higher than 

the capacity of a single stud. The shear stud gage data also show that 

studs grouped transversely do not experience large stresses prior to a 

concrete breakout failure and that the force is not distributed evenly 

among the studs.  In specimens with three studs, the center stud resists 

approximately half of the total force, while each of the outer studs 

resist about one-quarter of the total force.   

5) During a fracture event the slab will likely experience significant 

cracking.  The experimental tests were successful in duplicating this 

behavior as all of the deck segments cracked prior to the concrete 

breakout failure.  While specimens with a 3-in. haunch had flexural 

cracks at the haunch edges, the increased depth in the haunch area 

prevented flexural cracking from occurring in that area.  Flexural 

cracking did occur at the mid-span location for all of the specimens 

without a haunch.         

6) The strain gages on the reinforcement steel show that no yielding of 

the deck reinforcement took place in any of the specimens with a 3-in. 

haunch.  Yielding took place in the specimens without a haunch, but 

the deck segments experienced very little plastic deformation.  The 

load versus slab deflection data also confirms that the deck segments 

did not experience much plastic deformation prior to the tensile failure 

of the shear stud connection.  Typically, for the specimens without a 

haunch, the mid-span strain in the bottom bars was just slightly above 

the yield strain at maximum load.  However, in some of the specimens, 
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strains significantly above the yield strain were measured as the 

breakout prism developed and the studs pulled out of the deck.     

6.3 RECOMMENDATIONS AND FUTURE WORK 

Based on the results of the tests performed on the 12 bridge deck segments, the 

following recommendations are suggested to improve the tensile behavior of the shear 

stud connection.  These suggestions have not yet been tested in the laboratory; therefore, 

it is recommended that future laboratory tests are performed to determine the effect of 

each method and to optimize the detail accordingly.  

1) Without changing the practice of grouping the studs transversely 

across the top flange, the simplest way to improve the behavior of the 

studs is to add haunch reinforcement around each row of studs.  This 

will improve the ductility of the studs and help with the redistribution 

of force along the length of the girder during a fracture event. 

2) Rather than grouping studs transversely in rows spaced far apart, use 

one stud in the center of the flange and space these single studs 

longitudinally at a distance that will allow for the same shear 

resistance.  This will increase the tensile capacity so that less of the 

total span length would be required to resist the tension force during a 

fracture event.   

3) Another method to improve the shear stud detail is to increase the 

length of the studs.  Increasing the length of the shear studs, while 

keeping the haunch height constant, will increase the penetration of the 

studs into the deck reinforcement mat.  This will force the breakout 

failure plane to cross the reinforcement, which will increase the 

ductility.  Increasing the ductility will help with the redistribution of 
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force along the length of the girder during a fracture event.  It is 

possible that using longer studs will also reduce the effect that the 

haunch has on the capacity. 

4) If longer studs are used in combination with the longitudinal spacing 

of single studs, then the capacity and the ductility can be improved. 

Future tests need to be done to verify that stud pullout will not govern 

over concrete breakout.  A stud pullout failure would increase the 

capacity of the current detail, but it would not improve ductility.         

5) The best way to improve the tensile behavior of the shear stud detail is 

to guarantee that yielding of the shear studs is the governing failure 

mode.  This will allow for the greatest ductility and redistribution of 

load.  A possible technique to ensure yielding of the stud is to reduce 

the diameter of the stud in order for yielding of the reduced section to 

control the tensile capacity, but to keep the base diameter constant for 

shear resistance.  Future work is needed to develop a detail that will 

allow for yielding of the stud to govern in tension, but that will not 

reduce the shear capacity of the studs.  
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APPENDIX A 

Analysis of Bridge Components 

Calculation of Tensile Force Needed to Be Transferred at Fracture 

 It was assumed that half of the entire weight of the bridge and half of the live load 

on the bridge would need to be resisted at fracture.  These loads are calculated below: 

Dead Load – Steel Box Girders 

wgirders = 2 x (109 in.2)(1 ft2/144 in.2)(0.490 kip/ft3)(1.15) = 0.853 kip/ft  

Notes: Multiplied by 2 to account for two girders.  Cross-sectional area of one 

girder is 109 in.2  Density of steel is 490 lb/ft3.  The factor of 1.15 accounts for 

internal diaphragms, stiffeners, etc. 

Dead Load – Deck Slab 

wslab = (280 in.)(8 in. + 0.731 in.)(0.150 kip/ft3)(1 ft2/144 in.2) = 2.55 kip/ft 

Notes: Width of deck slab is 23 ft-4 in. = 280 in. (See Appendix B).  Density of 

concrete is 150 lb/ft3.  Slab thickness is 8 in., and 0.731 in. was added to account 

for extra concrete in the ribs of the permanent metal decking. 

Dead Load – T501 Rails 

wrails = 2 x (312 in.2)(1 ft2/144in.2)(0.150 kip/ft3) = 0.65 kip/ft 

Notes: Multiplied by 2 to account for two rails.  Cross-sectional area of one rail 

was calculated to be approximately 312 in.2 

Live Load – Simulated Truck 

Total truck load = 76 kips 

Required Tensile Force 

T = (wgirders + wslab + wrails)*L/2 + 76 kips/2 
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T = (0.853 kip/ft + 2.55 kip/ft + 0.65 kip/ft)(118 ft / 2) + 38 kip = 277 kips 

Treq’d = 277 kips x 2.0 = 554 kips 

Notes: Half of the total dead load is equal to wL/2 and half of the truck is 38 kips.  

The 277-kip force is multiplied by 2.0 for the dynamic effect.  The span length of 

the FSEL test bridge is approximately 118 ft. 

 

Calculation of Maximum Moment on the Bridge at Fracture 

Dead Load – Mid-span Moment 

 Mdead = (wgirders + wslab + wrails)*L2/8 = (0.853 kip/ft + 2.55 kip/ft + 0.65 kip/ft)(118 ft)2/8 

Mdead = 7048 kip-ft 

Live Load – Moment due to Truck 

 The distribution of the 76-kip truck load, the shear diagram and the moment 

diagram are shown in the figure below: 

43.4 
kip

32.6 
kip

8.2 
kip

33.9 
kip

33.9 
kip

41.33 ft 14 ft 14 ft 48.67 ft
118 ft

V (kip)

43.41

9.51

24.39
32.59

1794 1927
1586

M (kip-ft)

Truck 
Load 
Distribution

 

Figure A.1: Truck load distribution, shear diagram, and moment diagram 
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Check the total moment at the mid-span and the total moment at the point of 

maximum live load moment (x = 55.33 ft) to see which governs as maximum moment. 

Mid-span Moment 

Mmid = MDL+MLL = 7048 kip-ft + 1838 kip-ft = 8886 kip-ft 

Moment at x = 55.33 ft 

w = wgirders + wslab + wrails = 0.853 kip/ft + 2.55 kip/ft +0.65 kip/ft = 4.05 kip/ft 

MDL,x=55.33 ft = wLx/2 – wx2/2 = (4.05 kip/ft*118 ft*55.33 ft/2)-(4.05 kip/ft*(55.33 ft)2/2) 

MDL, x = 55.33 ft = 7021 kip-ft 

Mx = 55.33 ft = MDL, x = 55.33 ft + MLL = 7021 kip-ft + 1927 kip-ft = 8948 kip-ft  (GOVERNS) 

Mmax = 8948 kip-ft @ x = 55.33 ft 

Mreq’d = 2.0 x Mmax = 2.0 x 8948 kip-ft = 17,896 kip-ft   

 

Analysis of Shear Studs 

 Analysis of the shear studs, calculation of the tensile capacity of a row of studs on 

the FSEL test bridge, and the required span length needed to resist the 554-kip force are 

covered in Chapter 2. 

 

Analysis of Deck Slab 

 The deck slab was checked for bending capacity and shear capacity.  These 

capacities were based on a 1-ft wide transverse deck section as shown in the figure 

below: 
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8"

12"

2.3125"
6.4375"

As,bottom = 0.62 in.²

As,top = 0.62 in.²

 

Figure A.2: Deck slab – 1-ft wide section 

Positive Bending Capacity 

 The assumed strain and stress failure profile are shown in the figure below: 

εsb > εy

εst

εc = 0.003 
c

Tb = As,bf y

Tt = As,tEsεst

0.85f 'c 
Cc = 0.85f 'cbβ1c

STRAIN STRESS

β1c

 

Figure A.3: Strain and stress profiles at positive moment capacity 

Assumptions: Ultimate strain of concrete is 0.003 in./in. (ACI 318-05).  Bottom 

steel reinforcement has yielded prior to failure.  Top reinforcement is in tension. 

Concrete strength is 4 ksi (corresponds to minimum required strength for TxDOT 

Class S).   

Let C = T 

C = 0.85fc’β1cb = 0.85*(4 ksi)(0.85)(12 in.)c = (34.68 kip/in)*c 

 Note: β1 = 0.85 for 4 ksi concrete.   

εs,bottom = (0.003 in./in.)*(6.4375 in. – c)/c  
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εs,top = (0.003 in./in.)*(2.3125 in. – c)/c 

Tbottom = As,bottomfy = (0.62 in.2)(60 ksi) = 37.2 kips 

Ttop = As,topεs,topEs = (0.62 in.2)(29,0000 ksi)* εs,top = (17,980 kips)* εs,top 

(34.68 kip/in)*c = 37.2 kip + (17,980 kips)* εs,top  

(34.68 kip/in)*c = 37.2 kip + (17,980 kips)* (0.003 in./in.)*(2.3125 in. – c)/c 

Iterate until the neutral axis depth is found. 

Solving: c = 1.67 in. 

εs,bottom = 0.00856 > Yield strain (= 0.00207 for 60 ksi)  

εs,top = 0.00115 < Yield strain 

C = 57.9 kips 

Ttop = 20.7 kips 

Take moments about centroid to solve for nominal moment capacity 

Mn
+ = C*(4 in. - β1c/2) - Ttop*(4 in. – 2.3125 in.) + Tbottom*(6.4375 in. – 4 in.) 

Mn
+ = (57.9 kip)*(4 in. – 0.85*1.67 in./2) – 20.7 kip*(1.6875 in.) + 37.2 kip*(2.4375 in.) 

Mn
+ = 246 kip-in. = 20.5 kip-ft 

 

Negative Bending Capacity 

 The assumed strain and stress failure profile are shown in the figure below: 

STRAIN STRESS

εc = 0.003 

εs,t > εy

εs,b

0.85f 'c 
Cc = 0.85f 'cbβ1cβ1c

Tb = As,bEsεsb

Tt = As,tf y

c

 

Figure A.4: Strain and stress profiles at negative moment capacity 
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Assumptions: Ultimate strain of concrete is 0.003 in./in. (ACI 318-05).  Top steel 

reinforcement has yielded prior to failure.  Bottom reinforcement is in tension. 

Concrete strength is 4 ksi (corresponds to minimum required strength for TxDOT 

Class S).   

Let C = T 

C = 0.85fc’β1cb = 0.85*(4 ksi)(0.85)(12 in.)c = (34.68 kip/in)*c 

 Note: β1 = 0.85 for 4 ksi concrete.   

εs,bottom = (0.003 in./in.)*(1.5625 in. – c)/c  

εs,top = (0.003 in./in.)*(5.6875 in. – c)/c 

Tbottom = As,bottomεs,bottomEs = (0.62 in.2)(29,0000 ksi)* εs,bottom = (17,980 kips)* εs,bottom 

Ttop = As,topfy = (0.62 in.2)(60 ksi) = 37.2 kips 

 (34.68 kip/in)*c = (17,980 kips)* εs,bottom + 37.2 kips 

(34.68 kip/in)*c = (17,980 kips)* (0.003 in./in.)*(1.5625 in. – c)/c + 37.2 kips 

Iterate until the neutral axis depth is found. 

Solving: c = 1.34 in. 

εs,bottom = 0.00051 < Yield strain  

εs,top = 0.00977 > Yield strain (= 0.00207 for 60 ksi) 

C = 46.3 kips 

Tbottom = 9.1 kips 

Take moments about centroid to solve for nominal moment capacity 

Mn
- = C*(4 in. - β1c/2) + Ttop*(4 in. – 2.3125 in.) - Tbottom*(6.4375 in. – 4 in.) 

Mn
- = (46.3 kip)*(4 in. – 0.85*1.34 in./2) + 37.2 kip*(1.6875 in.) – 9.1 kip*(2.4375 in.) 

Mn
- = 199 kip-in. = 16.6 kip-ft 
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Bending Capacity – Shear across Deck Slab 

 The assumed deck slab deflected shape and bending moment diagram at fracture 

is shown in the figure below: 
 Mn+

Mn-

s

 

Figure A.5: Assumed bending moment in deck slab at ultimate state 

V = (Mn
+ + Mn

-)/s = (20.5 kip-ft + 16.6 kip-ft)/6 ft = 6.2 kips 

 Note: The spacing, s, is equal to 6 ft.  

 Thus, at the flexural capacity the deck slab can transfer 6.2 kips across a 1-ft wide 

section of the slab.  Therefore, the total length required to transfer the 554-kip force is: 

L = 554 kips * (1 ft / 6.2 kips) = 89.4 ft 

89.4 ft / 118 ft = 75.7 % of the span length 

 

Shear Capacity 

 The shear capacity was calculated using the ACI equation for shear shown below.  

The capacity was again based on a 1-ft wide transverse deck section.  The depth used in 

this equation is the depth to the centroid of the tension reinforcement (= 4.375 in.). 

Vc = 2*(fc’)0.5bd = 2*(4000 psi)0.5(12 in.)(4.375 in.) 

Vc = 6.64 kips 
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 Thus, at the shear capacity the deck slab can transfer 6.64 kips across a 1-ft wide 

section of the slab.  The total length required to transfer the 554-kip force is: 

L = 554 kips * (1 ft / 6.64 kips) = 83.4 ft 

83.4 ft / 118 ft = 70.7 % of the span length 

 Therefore, the deck slab capacity is governed by the flexural behavior of the 

slab.  Approximately 76% of the span length is required to transfer the 554-kip 

force. 

 

Analysis of Composite Section 

 Calculate the plastic moment capacity of the remaining box girder.  The 

composite section of the remaining girder is shown below: 

b = 140 in.

12" 12"

5
8"5

8"

47"

58.754"

1
2"1

2"

3
4"

121
2"

57"

 

Figure A.6: Composite section 

Find the plastic neutral axis by setting T = C: 

T = AsFy = (109 in.2)(50 ksi) = 5450 kips 

C = 0.85fc’tsbeff = 0.85*(4 ksi)(8 in.)(140 in.) = 3808 kips  

T > C … Therefore, plastic neutral axis is in the girder. 



 107

Csteel = (AsFy – Cconc) / 2 = (5450 kip – 3808 kip) / 2 = 821 kips 

 Note: This equation determines the compressive force needed to be developed in 

the steel section in order to achieve equilibrium ( C = T). 

Csteel, top flanges = 2 x tfbfFy = 2 x (0.625 in.)(12 in.)(50 ksi) = 750 kips 

 Note: This calculation shows that the top flanges can resist 750 kips in 

compression.  This is less than the required 821 kips, thus the PNA is in the web. 

Let x = the location of the neutral axis below the top flange as shown in the figure below: 

PNA
x

Top flange

Web

 

Figure A.7: Plastic neutral axis location 

x = (821 kips – 750 kips) / [2 x (0.5 in.)(17/16)1/2(50 ksi)] = 1.38 in. 

Notes: This equation is determining the depth of the neutral axis in the webs.  The 

factor of 2 accounts for the two webs.  The (17/16)1/2 factor is based on the 

geometry of the web. 

Therefore: 

Cconcrete = 3808 kips 

Csteel, top flanges = 750 kips 

Csteel, web = 71 kips 

Tweb = Aweb, tensionFy = 2 x (0.5 in.)[58.754 in. – (17/16)1/2(1.38 in.)](50 ksi) = 2866.5 kips 

Tbottom flange = Abottom flangeFy = (47 in.)(0.75 in.)(50 ksi) = 1762.5 kips 

Take moments about the PNA to get the nominal plastic moment capacity: 

Mbot flange = Tbot flange x (3/8 in. + 57 in. – 1.38 in.) = 98,695 kip-in. 

Mweb, tens = Tweb x [(57 in. – 1.38 in.) / 2] = 79,721 kip-in. 
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Mweb,comp = Csteel,web x (1.38 in. / 2) = 49 kip-in. 

Mtop flange = Cstee;, top flanges x (5/16 in. + 1.38 in.) = 1,268 kip-in. 

Mconcrete = Cconc x (4 in. + 3 in. + 5/8 in. + 1.38 in.) = 34,282 kip-in. 

 Note: The 3-in. term added in the moment arm accounts for the haunch which 

puts the deck slab 3 in. above the top of the steel girder. 

Thus, Mp = 98,695 kip-in. + 79,721 kip-in. + 49 kip-in. + 1,268 kip-in. + 34,282 kip-in. 

Mp = 214,015 kip-in. = 17,835 kip-ft 

 Recall that Mmax = 17,896 kip-ft (with the amplification factor of 2.0 for 

dynamic effect).  The plastic moment capacity appears to have just enough capacity 

to resist the required moment at fracture.   
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APPENDIX B 

FSEL Bridge Deck Details and TxDOT Stud Detail 

 
Figure B.1: FSEL bridge deck – typical transverse section 



 110

 

Figure B.2: FSEL bridge deck – plan view 
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Figure B.3: Notes for FSEL bridge deck drawings (Fig. B.1-B.2) 
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Figure B.4: TxDOT typical stud connector detail for three studs (TxDOT Bridge 
Standard Drawings: Miscellaneous Details (Steel Girders and Beams), 2006) 
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 APPENDIX C 

Complete Test Specimen Details 

 
Figure C.1: Specimen 0-1 (a,b) 
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Figure C.2: Specimen 0-2 (a,b) 
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Figure C.3: Specimen 0-3 (a.b) 
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Figure C.4: Specimen 3-1 (a,b) 
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Figure C.5: Specimen 3-2 (a,b) 
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Figure C.6: Specimen 3-3 (a,b)
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 APPENDIX D 

Test Specimens – Cracking, Yield and Ultimate Load 

Slab Details 

d

d b

t

Asb

Ast

b
 

Figure D.1: Test specimen – slab cross section 

Where:  b  = 24 in. 

  h = 8 in.   

  dt  = 2.3125 in. 

  db  = 6.4375 in. 

  Ast  = 1.23 in.2 

  Asb  = 1.23 in.2 

  fc’  = 6,000 psi (from cylinder tests) 

  fy = 60,000 psi 

 

Calculation of Cracking Load 

c
If

c
I

M ccr
cr

'5.7
==

σ
 

I = 1/12*(24 in.)(8 in.)3 = 1024 in.4 

c = 4 in. 
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σcr = 7.5(6000 psi)1/2 = 581 psi 

Mcr = (581 psi)(1024 in.4) / (4 in.) = 148,723 lb-in. = 12.4 kip-ft 

For specimens with no haunch, cracking will occur at mid-span.  However, for 

specimens with a haunch, cracking will not occur at the mid-span due to the increased 

depth of the slab at this point.  Rather cracking will occur first at the edges of the haunch 

where the depth returns to 8 in.  (Note: Span length is 6.5 ft)   

No haunch 

Mmid = PL/4 

Pcr, no haunch = (Mcr x 4) / L = (12.4 kip-ft x 4) / (6.5 ft) = 7.63 kips 

3 in. Haunch 

Cracking occurs where depth returns to 8 in.  This is a distance of 33 in. from the 

support reaction.  (Note: Mid-span is 39 in. from support reaction) 

Mx = (P / 2)(x) 

Pcr, 3” haunch = (2Mcr) / x = (2)(12.4 kip-ft) / (33/12 ft) = 9.02 kips 

 

Calculation of Yield Load 

kd
Concrete in 
compression

d

d b

t

nAsb

nAst

b  

Figure D.2: Assumed location of neutral axis at yield load 
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 By setting the first moment of area of the concrete compression block and the first 

moment of area of the steel reinforcement equal to each other, the depth of the neutral 

axis, kd, is determined: 

( ) ( ) ( )kddnAkddnAkdkdb tstbsb −+−=⎟
⎠
⎞

⎜
⎝
⎛

2
 

n = Es / Ec = Es / 57,000(fc’)1/2 = (29,000,000 psi) / [57,000 x (6000 psi)1/2] = 6.57 

(24 in.)(kd)2 / 2 = (6.57)(1.23 in.2)(6.4375 in. – kd) + (6.57)(1.23 in.2)(2.3125 in. – kd) 

Solving… kd = 1.85 in.   

 The assumed strain and stress profiles are shown below.  This concrete stress 

distribution is acceptable as long as fc < 0.7fc’. 

εsb = εy

εst

εc 
kd

Tsb = Asbf y

kd/3

Tst = AstEsεst

f c = Ecεc

Cc = 0.5b(kd)fc

STRAIN STRESS
 

Figure D.3: Assumed strain and stress profile at yielding 

εc = (kd)εy / (db – kd) = (1.85 in.)(0.00207) / (6.4375 in. – 1.85 in.) = 0.000832 in./in. 

fc = Ecεc = 57(6000 psi)1/2(0.000832 in./in.) = 3.67 ksi < 0.7fc’ (= 4.2 ksi) 

εs,top = εc(dt – kd) / kd = (0.000832)(2.3125 in. – 1.85 in.) / (1.85 in.) = 0.00021 in./in. 

Cc = (1/2)fcb(kd) = 0.5(3.67 ksi)(24 in.)(1.85 in.) = 81.3 kips 

Ts,top = As,topεs,topEs = (1.23 in.2)(0.00021)(29,0000 ksi) = 7.5 kips 

Ts,bottom = As,bottomfy = (1.23 in.2)(60 ksi) = 73.8 kips 

Take moments about centroid to solve for yield moment: 

My = Cc*(4 in. - kd/3) - Ttop*(4 in. – 2.3125 in.) + Tbottom*(6.4375 in. – 4 in.) 
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My = (81.3 kips)*(4 in. – 1.85 in./3) – 7.5 kips*(1.6875 in.) + 73.8 kips*(2.4375 in.) 

My = 442 kip-in. = 36.9 kip-ft 

Py = (My x 4) / L = (36.9 kip-ft x 4) / (6.5 ft) = 22.7 kips 

 

Calculation of Ultimate Load 

The assumed strain and stress failure profile are shown in the figure below: 

εsb > εy

εst

εc = 0.003 
c

Tb = As,bf y

Tt = As,tEsεst

0.85f 'c 
Cc = 0.85f 'cbβ1c

STRAIN STRESS

β1c

 

Figure D.4: Assumed strain and stress profiles at ultimate moment capacity 

Assumptions: Ultimate strain of concrete is 0.003 in./in.  Bottom steel 

reinforcement has yielded prior to failure.  Top reinforcement is in tension. 

Concrete strength is 6 ksi (corresponds to cylinder strength at halfway point in 

testing program).   

Let C = T 

C = 0.85fc’β1cb = 0.85*(6 ksi)(0.75)(24 in.)c = (91.8 kip/in)*c 

 Note: β1 = 0.75 for 6 ksi concrete.   

εs,bottom = (0.003 in./in.)*(6.4375 in. – c)/c  

εs,top = (0.003 in./in.)*(2.3125 in. – c)/c 

Tbottom = As,bottomfy = (1.23 in.2)(60 ksi) = 73.8 kips 

Ttop = As,topεs,topEs = (1.23 in.2)(29,0000 ksi)* εs,top = (35,670 kips)* εs,top 

(91.8 kip/in)*c = 73.8 kips + (35,670 kips)* εs,top  
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(91.8 kip/in)*c = 73.8 kips + (35,670 kips)* (0.003 in./in.)*(2.3125 in. – c)/c 

Iterate until the neutral axis depth is found. 

Solving: c = 1.47 in. 

εs,bottom = 0.0101 > Yield strain (= 0.00207 for 60 ksi)  

εs,top = 0.0017 < Yield strain 

C = 135.0 kips 

Ttop = 61.2 kips 

Take moments about centroid to solve for nominal moment capacity. 

Mn = C*(4 in. - β1c/2) - Ttop*(4 in. – 2.3125 in.) + Tbottom*(6.4375 in. – 4 in.) 

Mn = (135 kip)*(4 in. – 0.75*1.47 in./2) – 61.2 kip*(1.6875 in.) + 73.8 kip*(2.4375 in.) 

Mn = 542 kip-in. = 45.2 kip-ft 

Pn = (Mn x 4) / L = (45.2 kip-ft x 4) / (6.5 ft) = 27.8 kips 
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APPENDIX E 

Predicted Tensile Capacity of Test Specimens 

 The predicted capacities were calculated using Appendix D of the ACI 318 

Building Code.  The following failure methods must be checked for each of the six 

unique test specimens: steel fracture, concrete breakout, and stud pullout.   

 

Stud Details 

h = 5 in. 

thead = 0.375 in. 

hef  = 4.625 in. 

dshaft  = 0.875 in. 

dhead = 1.375 in. 

fy = 51 ksi (from mill test reports – See Appendix F) 

fu = 66 ksi (from mill test reports – See Appendix F) 

 

Specimens with No Haunch 
4"

4" 4" 2" 2"

2 Eq Sp

12"

6" 6"

 

Figure E.1: Stud details for specimens with no haunch 
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3hef

s s1.5hef 1.5hef

3hef

s 1.5hef1.5hef

3hef

3hef  

Figure E.2: Concrete breakout – projected failure areas for specimens with no haunch 
(ANc) 

No Haunch – One Stud 

Steel Strength: 

Nsa = nAsefuta = (1)(π/4)(0.875 in.)2(66 ksi) = 39.7 kips 

 Note: futa = tensile strength of the stud; Ase = cross-sectional area of stud shaft  

Concrete Breakout: 

Ncb = [ANc / ANco]ψed,Nψc,NNb 

 Note: Ncb is the concrete breakout strength 

ANc = 9hef
2 = 9(4.625in.)2 = 192.5 in.2 

 Note: ANc is the projected failure area of the stud 

ANco = 9hef
2 = 9(4.625in.)2 = 192.5 in.2 

 Note: ANco is the projected failure area of one stud with no edge or group effects 

ψed,N = 1.0 (No edge effects) 

 Note: ψed,N is a modification factor for edge effects (applied when ca,min < 1.5hef) 

ψc,N = 1.0 (Cracking assumed to occur) 

Note: ψc,N is a modification factor for cracking (= 1.25 when analysis indicates no 

cracking; otherwise = 1.0) 

Nb = kc(fc’)1/2hef
1.5 = (24)(6,000 psi)1/2(4.625 in.)1.5(1 kip / 1000 lb) = 18.5 kips 
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 Note: fc’ = 6000 psi based on cylinder tests at midpoint of testing program 

 kc = 24 for all cast-in headed anchors 

Ncb = [192.5 in.2 / 192.5 in.2](1.0)(1.0)(18.5 kip) = 18.5 kips 

Pullout:  

Npn = ψc,P8Abrgfc’ = (1.0)(8)(0.884 in.2)(6 ksi) = 42.4 kips 

 Note: Abrg is the bearing area of the stud head.  It is equal to the area of the stud 

head minus the area of the stud shaft ( = π/4 * [(1.375 in.)2 – (0.875 in.)2] = 0.884 

in.2). ψc,P is a modification factor for cracking (= 1.4 if no cracking; otherwise = 

1.0)  

 Therefore, concrete breakout failure governs with Ncb = 18.5 kips 

 

No Haunch – Two Studs 

Steel Strength: 

Nsa = nAsefuta = (2)(π/4)(0.875 in.)2(66 ksi) = 79.4 kips 

Concrete Breakout: 

Ncbg = [ANc / ANco]ψec,Nψed,Nψc,NNb 

ANc = 3hef x (1.5hef + s + 1.5hef) = 3(4.625in.) x [3(4.625 in.) + 4 in.] = 248.0 in.2 

ANco = 9hef
2 = 9(4.625in.)2 = 192.5 in.2 

ψec,N = 1.0 (No eccentric loading) 

 Note: ψec,N is a modification factor to account for eccentric loading of a group of 

studs.  It is less than 1.0 for groups with eccentric loading.     

ψed,N = 1.0 (No edge effects) 

ψc,N = 1.0 (Cracking assumed to occur) 

Nb = kc(fc’)1/2hef
1.5 = (24)(6,000 psi)1/2(4.625 in.)1.5(1 kip / 1000 lb) = 18.5 kips 

Ncbg = [248.0 in.2 / 192.5 in.2](1.0)(1.0)(1.0)(18.5 kip) = 23.8 kips 
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Pullout:  

Npn = 2 x ψc,P8Abrgfc’ = 2 x (1.0)(8)(0.884 in.2)(6 ksi) = 84.8 kips 

 Therefore, concrete breakout failure governs with Ncbg = 23.8 kips 

 

No Haunch – Three Studs 

Steel Strength: 

Nsa = nAsefuta = (3)(π/4)(0.875 in.)2(66 ksi) = 119.1 kips 

Concrete Breakout: 

Ncbg = [ANc / ANco]ψec,Nψed,Nψc,NNb 

ANc = 3hef x (1.5hef + s + s + 1.5hef) = 3(4.625in.) x [3(4.625 in.) + 2(4 in.)] = 303.5 in.2 

ANco = 9hef
2 = 9(4.625in.)2 = 192.5 in.2 

ψec,N = 1.0 (No eccentric loading) 

ψed,N = 1.0 (No edge effects) 

ψc,N = 1.0 (Cracking assumed to occur) 

Nb = kc(fc’)1/2hef
1.5 = (24)(6,000 psi)1/2(4.625 in.)1.5(1 kip / 1000 lb) = 18.5 kips 

Ncbg = [303.5 in.2 / 192.5 in.2](1.0)(1.0)(1.0)(18.5 kip) = 29.2 kips 

Pullout:  

Npn = 3 x ψc,P8Abrgfc’ = 3 x (1.0)(8)(0.884 in.2)(6 ksi) = 127.2 kips 

 Therefore, concrete breakout failure governs with Ncbg = 29.2 kips 
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Specimens with a 3 in. Haunch 
4" 2 Eq Sp

4" 4" 2" 2"

12"

6" 6"

 
Figure E.3: Stud details for specimens with a 3 in. haunch 
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Figure E.4: Concrete breakout – projected failure areas for specimens with a 3 in. 
haunch (ANc) 

3 in. Haunch – One Stud 

Steel Strength: 

Nsa = nAsefuta = (1)(π/4)(0.875 in.)2(66 ksi) = 39.7 kips 

Concrete Breakout: 

Ncb = [ANc / ANco]ψed,Nψc,NNb 

ANc = (ca + ca) x 3hef = (6 in. + 6 in.) x 3(4.625in.) = 166.5 in.2 

ANco = 9hef
2 = 9(4.625in.)2 = 192.5 in.2 

ψed,N = 0.7 + 0.3 x [ca,min / (1.5hef)] = 0.7 + 0.3 x [4 in. / (1.5(4.625 in.))] = 0.959 

ψc,N = 1.0 (Cracking assumed to occur) 
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Nb = kc(fc’)1/2hef
1.5 = (24)(6,000 psi)1/2(4.625 in.)1.5(1 kip / 1000 lb) = 18.5 kips 

Ncb = [166.5 in.2 / 192.5 in.2](0.959)(1.0)(18.5 kip) = 15.3 kips 

Pullout:  

Npn = ψc,P8Abrgfc’ = (1.0)(8)(0.884 in.2)(6 ksi) = 42.4 kips 

 Therefore, concrete breakout failure governs with Ncb = 15.3 kips 

 

3 in. Haunch – Two Studs 

Steel Strength: 

Nsa = nAsefuta = (2)(π/4)(0.875 in.)2(66 ksi) = 79.4 kips 

Concrete Breakout: 

Ncb = [ANc / ANco]ψed,Nψc,NNb 

ANc = (ca + s + ca) x 3hef = (4 in. + 4 in. + 4 in.) x 3(4.625in.) = 166.5 in.2 

ANco = 9hef
2 = 9(4.625in.)2 = 192.5 in.2 

ψed,N = 0.7 + 0.3 x [ca,min / (1.5hef)] = 0.7 + 0.3 x [4 in. / (1.5(4.625 in.))] = 0.873 

ψc,N = 1.0 (Cracking assumed to occur) 

Nb = kc(fc’)1/2hef
1.5 = (24)(6,000 psi)1/2(4.625 in.)1.5(1 kip / 1000 lb) = 18.5 kips 

Ncb = [166.5 in.2 / 192.5 in.2](0.873)(1.0)(18.5 kip) = 14.0 kips 

Pullout:  

Npn = 2 x ψc,P8Abrgfc’ = 2 x (1.0)(8)(0.884 in.2)(6 ksi) = 84.8 kips 

 Therefore, concrete breakout failure governs with Ncbg = 14.0 kips 

 

3 in. Haunch – Three Studs 

Steel Strength: 

Nsa = nAsefuta = (3)(π/4)(0.875 in.)2(66 ksi) = 119.1 kips 

Concrete Breakout: 
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Ncb = [ANc / ANco]ψed,Nψc,NNb 

ANc = (ca + s + s + ca) x 3hef = (2 in. + 4 in. + 4 in. + 2 in.) x 3(4.625in.) = 166.5 in.2 

ANco = 9hef
2 = 9(4.625in.)2 = 192.5 in.2 

ψed,N = 0.7 + 0.3 x [ca,min / (1.5hef)] = 0.7 + 0.3 x [2 in. / (1.5(4.625 in.))] = 0.786 

ψc,N = 1.0 (Cracking assumed to occur) 

Nb = kc(fc’)1/2hef
1.5 = (24)(6,000 psi)1/2(4.625 in.)1.5(1 kip / 1000 lb) = 18.5 kips 

Ncb = [166.5 in.2 / 192.5 in.2](0.786)(1.0)(18.5 kip) = 12.6 kips 

Pullout:  

Npn = 3 x ψc,P8Abrgfc’ = 2 x (1.0)(8)(0.884 in.2)(6 ksi) = 127.2 kips 

 Therefore, concrete breakout failure governs with Ncbg = 12.6 kips 
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APPENDIX F 

Mill Test Report for Studs used in Test Specimens 

 
Figure F.1: Shear stud mill test report 



 132

REFERENCES 

ACI Committee 318. (2005). Building Code Requirements for Structural Concrete (ACI 
318-05) and Commentary (ACI 318R-05). American Concrete Institute, 
Farmington Hills, MI. 

American Association of State Highway Transportation Officials. (2004). AASHTO 
LRFD Bridge Design Specifications. Washington, D.C. 

American Association of State Highway Transportation Officials/American Welding 
Society. (2002). AASHTO/AWS D1.5M/D1.5:2002 Bridge Welding Code.  
AASHTO/AWS, Washington D.C./Miami, FL.  

Connor, Robert J., Dexter, Robert, and Mahmoud, Hussam. (2005). “Inspection and 
Management of Bridges with Fracture-Critical Details.” National Cooperative 
Highway Research Program Synthesis 354. Transportation Research Board, 
National Academy Press, Washington, D.C.     

Daniels, J. H., Kim, W., and Wilson, J. L. (1989). “Recommended Guidelines for 
Redundancy Design and Rating of Two-Girder Steel Bridges.” National 
Cooperative Highway Research Program Report 319. Transportation Research 
Board, National Academy Press, Washington, D.C.  

Eligehausen, Rolf and Balogh, Tamas. (1995). “Behavior of Fasteners Loaded in Tension 
in Cracked Reinforced Concrete.” ACI Structural Journal, vol. 92, no. 3, pp. 365-
379.  

Fuchs, Werner, Eligehausen, Rolf, and Breen, John E. (1995). “Concrete Capacity Design 
(CCD) Approach for Fastening to Concrete.” ACI Structural Journal, vol. 92, no. 
1, pp. 73-94.  

Ghosn, M. and Moses, F. (1998). “Redundancy in Highway Bridge Superstructures.” 
National Cooperative Highway Research Program Report 406. Transportation 
Research Board, National Academy Press, Washington, D.C. 

Texas Department of Transportation. (2001). Bridge Design Manual. 

Texas Department of Transportation. (2001). Bridge Detailing Manual.    

Texas Department of Transportation. (2006). Bridge Standard Drawings. 

Shirvani, Mansour, Klingner, Richard E., and Graves III, Herman L. (2004). “Breakout 
Capacity of Anchors in Concrete – Part 1: Tension.” ACI Structural Journal, vol. 
101, no. 6, pp. 812-820. 



 133

VITA 

 

James Patrick Sutton was born in West Islip, New York on July 4, 1983, the son 

of James Christopher and Mary Katherine Sutton.  He is the brother of Erin, Patrick and 

Mary Beth Sutton.  He attended Regis High School in New York, New York where he 

graduated in June 2001.  He obtained his Bachelor of Science in Civil Engineering from 

Villanova University in May 2005 and entered the Graduate School at the University of 

Texas in August 2005 to pursue a Master of Science in Engineering degree.  While at the 

University of Texas, he worked as a Graduate Research Assistant at the Phil M. Ferguson 

Structural Engineering Laboratory.  He completed his M.S.E. in May 2007.         

 

 

 

Permanent address: 15 Creek Court 

   Easton, Pennsylvania 18040 

 

This thesis was typed by the author. 

 

 
 

 


